集合A={x|(x-1)(x+1)<0},B={x|b-a<x<2+a}.若“a=1”是“A∩B≠∅“的充要條件,則b的取值范圍可以是
 
考點(diǎn):必要條件、充分條件與充要條件的判斷
專題:不等式的解法及應(yīng)用
分析:先解二次不等式求出集合A,再利用a=1是A∩B≠∅的充分條件確定b的取值范圍.
解答: 解:∵集合A={x|(x-1)(x+1)<0}={x|-1<x<1},B={x|b-a<x<2+a}.
當(dāng)a=1時(shí),B={x|b-1<x<3},要使A∩B≠∅,
則b-1<1,
解得b<2,
故b的取值范圍可以是b<2,
故答案為:b<2
點(diǎn)評(píng):本題主要考查二次不等式的解法以及充分條件和必要條件的應(yīng)用,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求如圖的區(qū)域面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax3,對(duì)任意的x1,x2,滿足x1f(x1)+x2f(x2)<x1f(x2)+x2f(x1),若f(1+2a)+f(2+a)>0,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在Rt△ABC中AB=BC,E為BC的中點(diǎn),點(diǎn)D在射線BA上,連接DE,過(guò)點(diǎn)B作BM⊥DE于M,過(guò)點(diǎn)A作AN⊥DE于N.
(1)當(dāng)點(diǎn)D是邊AB的中點(diǎn),如圖1,易證明:AN+BM=2EM;
(2)當(dāng)點(diǎn)D的位置如圖2和圖3時(shí),上述結(jié)論是否成立,若成立,請(qǐng)給與在證明,若不成立,線段AN、BM、EM之間又有怎樣的相等關(guān)系,寫(xiě)出你的猜想,不必證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列命題中正確的是
 
(寫(xiě)出所有正確命題的序號(hào))
①在直角三角形中,三條邊的長(zhǎng)成等差數(shù)列的充要條件是它們的比為3:4:5;
②設(shè)Sn是等比數(shù)列{an}的前n項(xiàng)和,則公比q=-
34
2
是數(shù)列S3,S9,S6成等差教列的充分不必要條件;
③若數(shù)列{an}滿足a1=2,an+1=ancos
2
,則a2010=0;
④在數(shù)列{an}中,若a1,a2都是正整數(shù),且an=|an-1-an-2|,n=3,4,5…,則稱{an}為“絕對(duì)差數(shù)列”,則此數(shù)列中必含有為0的項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}滿足:an+1=2(an-1)2+1且a1=3,an>1
(1)設(shè)bn=log2(an-1),求證:{bn+1}為等比數(shù)列;
(2)設(shè)cn=nbn,求數(shù)列{cn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(ex)=ex,g(x)=
1
e
f(x)-(x+1)(e=2.718…)
(1)求函數(shù)g(x)的極大值;
(2)令F(x)=
x2
2
-f(x),求函數(shù)y=F(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知α為第四象限角,sinα+cosα=
7
13
,則tanα=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直線l:mx-m2y-1=0經(jīng)過(guò)點(diǎn)P(2,1),則傾斜角與直線l的傾斜角互為補(bǔ)角的一條直線方程是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案