在Rt△ABC中AB=BC,E為BC的中點(diǎn),點(diǎn)D在射線BA上,連接DE,過點(diǎn)B作BM⊥DE于M,過點(diǎn)A作AN⊥DE于N.
(1)當(dāng)點(diǎn)D是邊AB的中點(diǎn),如圖1,易證明:AN+BM=2EM;
(2)當(dāng)點(diǎn)D的位置如圖2和圖3時(shí),上述結(jié)論是否成立,若成立,請(qǐng)給與在證明,若不成立,線段AN、BM、EM之間又有怎樣的相等關(guān)系,寫出你的猜想,不必證明.
考點(diǎn):進(jìn)行簡單的合情推理
專題:推理和證明,立體幾何
分析:設(shè)∠ADN=α,易得:∠BDM=∠EBM=α,可得AN=sinα•AD,BM=sinα•BD,EM=sinα•BE=
1
2
sinα•BC=
1
2
sinα•AB,可得圖2中,AN+BM=2EM成立,圖3中BM-AN=2EM成立.
解答: 證明:設(shè)∠ADN=α,易得:∠BDM=∠EBM=α,
則AN=sinα•AD,BM=sinα•BD,
EM=sinα•BE=
1
2
sinα•BC=
1
2
sinα•AB,
圖2中:AN+BM=sinα•AD+sinα•BD=sinα•AB,
故AN+BM=2EM成立;
圖3中,BM-AN=sinα•BD-sinα•AD=sinα•AB,
即此時(shí):BM-AN=2EM
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是合情推理,平面幾何證明,難度不大,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若二次函數(shù)y=ax2+bx+c在區(qū)間[0,+∞)上是減函數(shù),則點(diǎn)P(a,b)在平面直角坐標(biāo)系中位于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,0≤φ≤
π
2
)的圖象在y軸右側(cè)的第一個(gè)最高點(diǎn)為P(
1
3
,2),在原點(diǎn)右側(cè)與x軸的第一個(gè)交點(diǎn)為H(
5
6
,0)
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)在區(qū)間[
1
4
,
3
4
]上的對(duì)稱軸方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知兩條平行線分別過P(-2,-2)、Q(1,3),當(dāng)這兩條直線之間的距離最大時(shí),這兩條平行線方程分別為
 
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=a|x-b|+2在(1,∞)上遞增,則實(shí)數(shù)a,b滿足的條件是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=|a|x2+x+1在[-1,+∞)上單調(diào)遞增,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

集合A={x|(x-1)(x+1)<0},B={x|b-a<x<2+a}.若“a=1”是“A∩B≠∅“的充要條件,則b的取值范圍可以是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

判斷下列各點(diǎn)的位置關(guān)系,并給出證明:
(1)A(1,2),B(-3,-4),C(2,3.5)
(2)E(9,1),F(xiàn)(1,-3),G(8,0.5)
(3)P(-1,2),Q(0.5,0),R(5,-6)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=log9(9x+1)+kx(k∈R)是偶函數(shù)
(Ⅰ)求實(shí)數(shù)k的值;
(Ⅱ)設(shè)g(x)=
1
2
x+m(m∈R),問是否存在實(shí)數(shù)m,使得函數(shù)f(x)的圖象恒在函數(shù)g(x)的圖象上方?若存在,求m的取值范圍;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案