14.已知函數(shù)f(x)定義在R上,f′(x)是f(x)的導(dǎo)函數(shù),且f′(x)<$\frac{1}{2}$,f(1)=1,則不等式f(x)<$\frac{x}{2}$+$\frac{1}{2}$的解集為(  )
A.{x|x<-1}B.{x|x>1}C.{x|x<-1或x>1}D.{x|-1<x<1}

分析 不等式可整理為f(x)-$\frac{x}{2}$<$\frac{1}{2}$,構(gòu)造函數(shù)g(x)=f(x)-$\frac{x}{2}$,通過導(dǎo)函數(shù)判斷函數(shù)g(x)的單調(diào)性求出解集.

解答 解:f(x)<$\frac{x}{2}$+$\frac{1}{2}$,
∴f(x)-$\frac{x}{2}$<$\frac{1}{2}$,
令g(x)=f(x)-$\frac{x}{2}$,g(1)=$\frac{1}{2}$,
∴g(x)<g(1),
g'(x)=f'(x)-$\frac{1}{2}$<0,
∴g(x)為減函數(shù),
∴x>1,
故選:B.

點(diǎn)評(píng) 考查了函數(shù)的構(gòu)造和導(dǎo)函數(shù)的應(yīng)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知a、b、c分別為△ABC的三個(gè)內(nèi)角A、B、C的對(duì)邊,若a=$\sqrt{6}$,b=2,B=45°,則角A等于( 。
A.60°B.120°C.60°或120°D.30°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.在△ABC中,內(nèi)角A、B、C的對(duì)邊分別是a、b、c,且滿足(4a-3c)cosB=3bcosC,若a,b,c成等差數(shù)列,則sinA+sinC=$\frac{\sqrt{7}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.如圖給出的是計(jì)算$\frac{1}{2}$+$\frac{1}{4}$+$\frac{1}{6}$+…+$\frac{1}{4030}$+$\frac{1}{4032}$的值的程序框圖,其中判斷框內(nèi)應(yīng)填入的是( 。
A.i≤4030?B.i≥4030?C.i≤4032?D.i≥4032?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=2,|$\overrightarrow$|=1,($\overrightarrow{a}$+$\overrightarrow$)•$\overrightarrow$=0,那么向量$\overrightarrow{a}$,$\overrightarrow$的夾角為( 。
A.30°B.60°C.150°D.120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知拋物線C:y2=2px(p>0)的焦點(diǎn)F和橢圓E:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的右焦點(diǎn)重合,直線l過點(diǎn)F交拋物線于A,B兩點(diǎn).
(Ⅰ)若直線l的傾斜角為135°,求|AB|的長;
(Ⅱ)若直線l交y軸于點(diǎn)M,且$\overrightarrow{MA}$=m$\overrightarrow{AF}$,$\overrightarrow{MB}$=n$\overrightarrow{BF}$,試求m+n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知橢圓W:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0),橢圓短軸長為2,且橢圓過點(diǎn)P(1,$\frac{{\sqrt{3}}}{2}}$),
1)求橢圓的方程;
2)直線l與橢圓W相交于A,B點(diǎn),請(qǐng)問在橢圓W上是否存在點(diǎn)C,四邊形AOBC為矩形,若存在,請(qǐng)求出矩形AOBC的面積,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.如圖,給出的是求$\frac{1}{2}$+$\frac{1}{4}$+$\frac{1}{6}$+…+$\frac{1}{30}$的值的一個(gè)程序框圖,則判斷框內(nèi)填入的條件是(  )
A.i≥15B.i≤15C.i≥14D.i≤14

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=|x+a|+|x-2|.
(Ⅰ)當(dāng)a=3時(shí),求不等式f(x)≥7的解集;
(Ⅱ)若f(x)≤|x-4|的解集包含[0,2],求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案