3.設(shè)p,q是兩個(gè)題,若¬p∧q是真命題,那么( 。
A.p是真命題且q是假命題B.p是真命題且q是真命題
C.p是假命題且q是真命題D.p是真命題且q是假命題

分析 利用復(fù)合命題的真假判斷即可.

解答 解:設(shè)p,q是兩個(gè)題,若¬p∧q是真命題,可知¬p與q都是真命題,則p是假命題且q是真命題.
故選:C.

點(diǎn)評(píng) 本題考查命題的真假的判斷與應(yīng)用,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,棱長(zhǎng)為1的正方體ABCD-A1B1C1D1中,
(1)求證:AC⊥平面B1D1DB;
(2)求三棱錐B-CD1B1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.如圖,為了測(cè)量河對(duì)岸電視塔CD的高度,小王在點(diǎn)A處測(cè)得塔頂D仰角為30°,塔底C與A的連線同河岸成15°角,小王向前走了1200m到達(dá)M處,測(cè)得塔底C與M的連線同河岸成60°角,則電視塔CD的高度為600$\sqrt{2}$m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在平面直角坐標(biāo)系xOy中,已知P點(diǎn)到兩定點(diǎn)D(-2,0),E(2,0)連線斜率之積為$-\frac{1}{2}$.
(1)求證:動(dòng)點(diǎn)P恒在一個(gè)定橢圓C上運(yùn)動(dòng);
(2)過$F(\sqrt{2},0)$的直線交橢圓C于A,B兩點(diǎn),過O的直線交橢圓C于M,N兩點(diǎn),若直線AB與直線MN斜率之和為零,求證:直線AM與直線BN斜率之和為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知復(fù)數(shù)z=1+i,則z4=( 。
A.-4iB.4iC.-4D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.某地區(qū)交通執(zhí)法部門從某日上午9時(shí)開始對(duì)經(jīng)過當(dāng)?shù)氐?00名車輛駕駛?cè)藛T駕駛的車輛進(jìn)行超速測(cè)試并分組,并根據(jù)測(cè)速的數(shù)據(jù)只做了頻率分布圖:
組號(hào)超速分組頻數(shù)頻率頻率
組距
1[0,20%]1760.88z
2[20%,40%]120.060.0030
3[40%,60%]6y0.0015
4[60%,80%]40.020.0010
5[80%,100%]x0.010.0005
(1)求z,y,x的值;
(2)若在第3,4,5組用分層抽樣的方法隨機(jī)抽取6名駕駛?cè)藛T做回訪調(diào)查,并在這6名駕駛員中任選2人進(jìn)行采訪,求這2人中恰有1人超速在[80%,100%]的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知橢圓G:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{1}{2}$,左頂點(diǎn)為A,上頂點(diǎn)為E,O是坐標(biāo)原點(diǎn),△OAE面積為$\sqrt{3}$.
(1)求橢圓G的方程;
(2)若過橢圓G的右焦點(diǎn)作垂直于x軸的直線m與G在第一象限內(nèi)交于點(diǎn)M,平行于AM的直線l與橢圓G相交于B,C兩點(diǎn),判斷直線MB,MC是否關(guān)于直線m對(duì)稱,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知△ABC的周長(zhǎng)為$\sqrt{2}+1$,面積為$\frac{1}{6}sinC$,且$sinA+sinB=\sqrt{2}sinC$,則角C的值為$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.給出下列命題:
①若$|{\overrightarrow a+\overrightarrow b}|=|{\overrightarrow a}|-|{\overrightarrow b}|$,則存在實(shí)數(shù)λ,使得$\overrightarrow b=λ\overrightarrow a$;
②$a={log_{\frac{1}{3}}}2,b={log_{\frac{1}{2}}}3,c={({\frac{1}{3}})^{0.5}}$大小關(guān)系是c>a>b;
③已知直線l1:ax+3y-1=0,l2:x+by+1=0,則l1⊥l2的充要條件是$\frac{a}=-3$;
④已知a>0,b>0,函數(shù)y=2aex+b的圖象過點(diǎn)(0,1),則$\frac{1}{a}+\frac{1}$的最小值是$4\sqrt{2}$.其中正確命題的序號(hào)是①② (把你認(rèn)為正確的序號(hào)都填上).

查看答案和解析>>

同步練習(xí)冊(cè)答案