分析 由余弦定理得7=1+AD2-2ADcos∠PAD,9=1+AB2-2ABcos∠PAB.再由∠PAD+∠PAB=90°,能求出正方形ABCD的面積.
解答 解:∵點P是正方形ABCD內(nèi)一點,且PA=1,PB=3,PD=$\sqrt{7}$,
∴由余弦定理,得PD2=PA2+AD2-2AP•AD•cos∠PAD,
∴7=1+AD2-2ADcos∠PAD,
同理,9=1+AB2-2ABcos∠PAB.
又∵∠PAD+∠PAB=90°,
∴cos2∠PAD+cos2∠PAB=1,
∴正方形ABCD的面積AD2=8-$\sqrt{14}$.
點評 本題考查正方形面積的求法,是基礎(chǔ)題,解題時要認真審題,注意余弦定理的合理運用.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $x=\frac{π}{3}$ | B. | $x=\frac{5π}{12}$ | C. | $x=\frac{π}{2}$ | D. | $x=\frac{5π}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | P1=P2 | B. | P1<P2 | ||
C. | P1>P2 | D. | P1,P2的大小無法確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-\frac{{9+4\sqrt{2}}}{7}或-\frac{{9-4\sqrt{2}}}{7}$ | B. | $-\frac{{18+8\sqrt{2}}}{7}或-\frac{{18-8\sqrt{2}}}{7}$ | ||
C. | $-\frac{{9+4\sqrt{2}}}{7}$ | D. | $-\frac{{9-4\sqrt{2}}}{7}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | α∥β,l?α,n?β⇒l∥n | B. | l⊥n,l⊥α⇒n∥α | C. | l⊥α,l∥β⇒α⊥β | D. | α⊥β,l?α⇒l⊥β |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com