8.將棱長(zhǎng)為2的正方體(圖1)切割后得一幾何體,其三視圖如圖2所示,則該幾何體的體積為( 。
A.$\frac{4}{3}$B.$\frac{8}{3}$C.2D.4

分析 由已知中的三視圖,可得該幾何體是一個(gè)以側(cè)視圖為底面的四棱錐,代入棱錐體積公式,可得答案.

解答 解:由已知中的三視圖,可得該幾何體是一個(gè)以側(cè)視圖為底面的四棱錐,
其底面面積S=2×2=4,
高h(yuǎn)=2,
故體積V=$\frac{1}{3}Sh$=$\frac{8}{3}$,
故選:B.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是棱錐的體積和表面積,簡(jiǎn)單幾何體的三視圖,難度不大,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.如圖為某幾何體的三視圖,求該幾何體的體積為( 。
A.36B.18C.6D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知雙曲線$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{^{2}}$=1(b∈N*)的左、右焦點(diǎn)分別為F1,F(xiàn)2,P為雙曲線右支上一點(diǎn),且|PF1|•|PF2|=4(4+b2),若|PF2|<4,則該雙曲線的離心率為( 。
A.$\sqrt{2}$B.$\frac{\sqrt{5}}{2}$C.2D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.目前,廣安市出租車的計(jì)價(jià)標(biāo)準(zhǔn)是:路程2km以內(nèi)(含2km)起步價(jià)8元收取,超過2km的路程按1.9km收取,但超過10km的路程需要加收50%的返空費(fèi)(即單價(jià)為1.9×(1+50%)=2.85元/km)(說明:現(xiàn)實(shí)中要計(jì)算等待時(shí)間,且最終付費(fèi)取整數(shù),本題在計(jì)算時(shí)都不予考慮)
(1)若0<x≤20,將乘客搭乘一次出租車的費(fèi)用用f(x)(單位:元)表示行程x(單位:km)的分段函數(shù)
(2)某乘客行程為16km,他準(zhǔn)備先乘一輛出租車行駛8km,然后再換乘另一輛出租車完成余下行程,請(qǐng)問:他是否比只乘一輛出租車完成全部行程更省錢?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.如圖,O為正方體ABCD-A1B1C1D1底面ABCD的中心,則下列直線中與D1O垂直的是( 。
A.B1CB.AA1C.ADD.A1C1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.下列四個(gè)結(jié)論:
①函數(shù)$y={0.7^{\frac{1}{x}}}$的值域是(0,+∞);
②直線2x+ay-1=0與直線(a-1)x-ay-1=0平行,則a=-1;
③過點(diǎn)A(1,2)且在坐標(biāo)軸上的截距相等的直線的方程為x+y=3;
④若圓柱的底面直徑與高都等于球的直徑,則圓柱的側(cè)面積等于球的表面積.
其中正確的結(jié)論序號(hào)為④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.“李曉同學(xué)一次擲出3枚骰子,3枚全是6點(diǎn)”的事件是( 。
A.不可能事件B.必然事件
C.可能性較大的隨機(jī)事件D.可能性較小的隨機(jī)事件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)y=2sin(2x+$\frac{π}{6}$)+2.
(1)當(dāng)函數(shù)y取得最大值時(shí),求自變量x的集合;
(2)該函數(shù)的圖象可由y=sin x(x∈R)的圖象經(jīng)過怎樣的平移和伸縮變換得到?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在平面直角坐標(biāo)系xOy中,已知圓M的圓心在直線y=-2x上,且圓M與直線x+y-1=0相切于點(diǎn)P(2,-1).
(1)求圓M的方程;
(2)過坐標(biāo)原點(diǎn)O的直線l被圓M截得的弦長(zhǎng)為$\sqrt{6}$,求直線l的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案