3.如圖,O為正方體ABCD-A1B1C1D1底面ABCD的中心,則下列直線中與D1O垂直的是( 。
A.B1CB.AA1C.ADD.A1C1

分析 推導出A1C1⊥BD,A1C1⊥DD1,從而D1O?平面BDD1,由此得到A1C1⊥BD.

解答 解:∵O為正方體ABCD-A1B1C1D1底面ABCD的中心,
∴A1C1⊥BD,A1C1⊥DD1,
∵BD∩DD1=D,
∴A1C1⊥平面BDD1,
∵D1O?平面BDD1
∴A1C1⊥BD.
故選:D.

點評 本題考查與已知直線垂直的直線的判斷,是中檔題,妥題時要認真審題,注意線面垂直的性質(zhì)的合理運用.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

13.已知函數(shù)f(x)=(m2-m-1)x-5m-3,m為何值時,f(x):
(1)是冪函數(shù);
(2)是正比例函數(shù);
(3)是反比例函數(shù);
(4)是二次函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.《九章算術(shù)》商功章有題:一圓柱形谷倉,高1丈3尺,容納米1950斛(1丈=10尺,斛為容積單位,1斛≈1.62立方尺,π≈3),則圓柱底面周長約為54尺.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知冪函數(shù)f(x)=xa的圖象過點(4,2),則f(9)的值為(  )
A.±3B.±$\frac{9}{2}$C.3D.$\frac{9}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.已知定義在R上的偶函數(shù)f(x)滿足f(x+4)=-f(x),且在區(qū)間[0,4]上市減函數(shù),則f(10)、f(13)、f(15)這三個函數(shù)值從小到大排列為f(13)<f(10)<f(15).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.將棱長為2的正方體(圖1)切割后得一幾何體,其三視圖如圖2所示,則該幾何體的體積為( 。
A.$\frac{4}{3}$B.$\frac{8}{3}$C.2D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知函數(shù)$f(x)=\sqrt{5-x}+lg(x+1)$的定義域為集合A,函數(shù)g(x)=lg(x2-2x+a)的定義域為集合B.
(Ⅰ)當a=-8時,求A∩B;
(Ⅱ)若A∩∁RB={x|-1<x≤3},求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.某工廠對某種產(chǎn)品的產(chǎn)量與成本的資料分析后有如下數(shù)據(jù):
產(chǎn)量x(千件)2356
成本y(萬元)78912
(1)畫出散點圖;
(2)求成本y與產(chǎn)量x之間的線性回歸方程;
(3)預計產(chǎn)量為8千件時的成本.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.已知函數(shù)f(x)=(x2+x+m)ex(其中m∈R,e為自然對數(shù)的底數(shù)).若在x=-3處函數(shù)f (x)有極大值,則函數(shù)f (x)的極小值是-1.

查看答案和解析>>

同步練習冊答案