科目: 來(lái)源:2013屆江西省四校度高二下學(xué)期期末聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:填空題
設(shè)集合函數(shù), 且, 則的取值范圍是 .
查看答案和解析>>
科目: 來(lái)源:2013屆江西省四校度高二下學(xué)期期末聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:填空題
從裝有n+1個(gè)球(其中n個(gè)白球,1個(gè)黑球)的口袋中取出m個(gè)球,
共有種取法,在這種取法中,可以分為兩類(lèi):一類(lèi)是取出的m個(gè)球全部為白球,
另一類(lèi)是取出的m個(gè)球中有1個(gè)黑球,共有種取法,
即有等式:成立.試根據(jù)上述思想可得
(用組合數(shù)表示)
查看答案和解析>>
科目: 來(lái)源:2013屆江西省四校度高二下學(xué)期期末聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:填空題
已知,設(shè),則由函數(shù)的圖象與x軸、直線(xiàn) 所圍成的封閉圖形的面積為 .
查看答案和解析>>
科目: 來(lái)源:2013屆江西省四校度高二下學(xué)期期末聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:填空題
、對(duì)于函數(shù)與函數(shù)有下列命題:
①無(wú)論函數(shù)的圖像通過(guò)怎樣的平移所得的圖像對(duì)應(yīng)的函數(shù)都不會(huì)是奇函數(shù);
②函數(shù)的圖像與兩坐標(biāo)軸及其直線(xiàn)所圍成的封閉圖形的面積為4;
③方程有兩個(gè)根;
④函數(shù)圖像上存在一點(diǎn)處的切線(xiàn)斜率小于0;
⑤若函數(shù)在點(diǎn)P處的切線(xiàn)平行于函數(shù)在點(diǎn)Q處的切線(xiàn),則直線(xiàn)PQ的斜率為,其中正確的命題是________.(把所有正確命題的序號(hào)都填上)
查看答案和解析>>
科目: 來(lái)源:2013屆江西省四校度高二下學(xué)期期末聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿(mǎn)分12分)已知c>0,設(shè)命題p:函數(shù)y=cx為減函數(shù).命題q:當(dāng)x∈時(shí),函數(shù)f(x)=x+> 恒成立.如果p或q為真命題,p且q為假命題.求c的取值范圍.
查看答案和解析>>
科目: 來(lái)源:2013屆江西省四校度高二下學(xué)期期末聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿(mǎn)分12分)已知在直角坐標(biāo)系xoy中,曲線(xiàn)的參數(shù)方程為
(t為非零常數(shù),為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系xoy取相同的長(zhǎng)度單位,且以原點(diǎn)O為極點(diǎn),以軸正半軸為極軸)中,直線(xiàn)的方程為.
(Ⅰ)求曲線(xiàn)C的普通方程并說(shuō)明曲線(xiàn)的形狀;
(Ⅱ)是否存在實(shí)數(shù),使得直線(xiàn)與曲線(xiàn)C有兩個(gè)不同的公共點(diǎn)、,且
(其中o為坐標(biāo)原點(diǎn))?若存在,請(qǐng)求出;否則,請(qǐng)說(shuō)明理由
查看答案和解析>>
科目: 來(lái)源:2013屆江西省四校度高二下學(xué)期期末聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿(mǎn)分12分)設(shè)二次函數(shù)在區(qū)間上的最大值、最小值分別是M、m,集合.
(Ⅰ)若,且,求M和m的值;
(Ⅱ)若,且,記,求的最小值.
查看答案和解析>>
科目: 來(lái)源:2013屆江西省四校度高二下學(xué)期期末聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿(mǎn)分12分)在第9屆校園文化藝術(shù)節(jié)棋類(lèi)比賽項(xiàng)目報(bào)名過(guò)程中,我校高二(2)班共有16名男生和14名女生預(yù)報(bào)名參加,調(diào)查發(fā)現(xiàn),男、女選手中分別有10人和6人會(huì)圍棋.
(I)根據(jù)以上數(shù)據(jù)完成以下22列聯(lián)表:
|
會(huì)圍棋 |
不會(huì)圍棋 |
總計(jì) |
男 |
|
|
|
女 |
|
|
|
總計(jì) |
|
|
30 |
并回答能否在犯錯(cuò)的概率不超過(guò)0.10的前提下認(rèn)為性別與會(huì)圍棋有關(guān)?
參考公式:其中n=a+b+c+d
參考數(shù)據(jù):
0.40 |
0.25 |
0.10 |
0.010 |
|
0.708 |
1.323 |
2.706 |
6.635 |
(Ⅱ)若從會(huì)圍棋的選手中隨機(jī)抽取3人成立該班圍棋代表隊(duì),則該代表隊(duì)中既有男又
有女的概率是多少?
(Ⅲ)若從14名女棋手中隨機(jī)抽取2人參加棋類(lèi)比賽,記會(huì)圍棋的人數(shù)為,求的期望.
查看答案和解析>>
科目: 來(lái)源:2013屆江西省四校度高二下學(xué)期期末聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿(mǎn)分13分)若集合具有以下性質(zhì):①②若,則,且時(shí),.則稱(chēng)集合是“好集”.
(Ⅰ)分別判斷集合,有理數(shù)集Q是否是“好集”,并說(shuō)明理由;
(Ⅱ)設(shè)集合是“好集”,求證:若,則;
(Ⅲ)對(duì)任意的一個(gè)“好集”A,分別判斷下面命題的真假,并說(shuō)明理由.
命題:若,則必有;
命題:若,且,則必有;
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com