科目: 來源:安徽省桐城十中2012屆高三上學(xué)期第一次月考數(shù)學(xué)理科試題 題型:044
如圖,在底面是正方形的四棱錐P-ABCD中,PA⊥面ABCD,BD交AC于點(diǎn)E,F(xiàn)是PC中點(diǎn),G為AC上一點(diǎn).
(1)求證:BD⊥FG;
(2)確定點(diǎn)G在線段AC上的位置,使FG∥平面PBD,并說明理由.
(3)當(dāng)二面角B-PC-D的大小為時(shí),求PC與底面ABCD所成角的正切值.
查看答案和解析>>
科目: 來源:安徽省桐城十中2012屆高三上學(xué)期第一次月考數(shù)學(xué)文科試題 題型:044
已知點(diǎn)P是直角坐標(biāo)平面內(nèi)的動(dòng)點(diǎn),點(diǎn)P到直線(p是正常數(shù))的距離為d1,到點(diǎn)的距離為d2,且d1-d2=1.
(1)求動(dòng)點(diǎn)P所在曲線C的方程;
(2)直線l過點(diǎn)F且與曲線C交于不同兩點(diǎn)A、B,分別過A、B點(diǎn)作直線的垂線,對(duì)應(yīng)的垂足分別為M、N,求證=0;
(3)記,,(A、B、M、N是(2)中的點(diǎn)),,求λ的值.
查看答案和解析>>
科目: 來源:安徽省桐城十中2012屆高三上學(xué)期第一次月考數(shù)學(xué)文科試題 題型:044
已知等差數(shù)列滿足a1=1,a3=6,若對(duì)任意的n∈N*,數(shù)列{bn}滿足bn,2an+1,bn+1依次成等比數(shù)列,且b1=4.
(Ⅰ)求an,bn
(Ⅱ)設(shè),證明:對(duì)任意的n∈N*,
查看答案和解析>>
科目: 來源:安徽省桐城十中2012屆高三上學(xué)期第一次月考數(shù)學(xué)文科試題 題型:044
設(shè)函數(shù)f(x)=x3―ax2―ax,g(x)=2x2+4x+c.
(1)試問函數(shù)f(x)能否在x=-1時(shí)取得極值?說明理由;
(2)若a=-1,當(dāng)x∈[-3,4]時(shí),函數(shù)f(x)與g(x)的圖像有兩個(gè)公共點(diǎn),求c的取值范圍.
查看答案和解析>>
科目: 來源:安徽省桐城十中2012屆高三上學(xué)期第一次月考數(shù)學(xué)文科試題 題型:044
某種產(chǎn)品的廣告費(fèi)支出x與銷售額y(單位:萬元)之間有如下對(duì)應(yīng)數(shù)據(jù):
(Ⅰ)求回歸直線方程;
(Ⅱ)試預(yù)測廣告費(fèi)支出為10萬元時(shí),銷售額多大?
(Ⅲ)在已有的五組數(shù)據(jù)中任意抽取兩組,求至少有一組數(shù)據(jù)其預(yù)測值與實(shí)際值之差的絕對(duì)值不超過5的概率.
(參考數(shù)據(jù):,參考公式:回歸直線方程y=a+bx,其中)
查看答案和解析>>
科目: 來源:安徽省桐城十中2012屆高三上學(xué)期第一次月考數(shù)學(xué)文科試題 題型:044
如圖甲,在平面四邊形ABCD中,已知∠A=45°,∠C=90°,∠ADC=105°,AB=BD,現(xiàn)將四邊形ABCD沿BD折起,使平面ABD⊥平面BDC(如圖乙),設(shè)點(diǎn)E、F分別為棱AC、AD的中點(diǎn).
(Ⅰ)求證:DC⊥平面ABC;
(Ⅱ)設(shè)CD=a,求三棱錐A-BFE的體積.
查看答案和解析>>
科目: 來源:安徽省桐城十中2012屆高三上學(xué)期第一次月考數(shù)學(xué)文科試題 題型:044
已知向量=(1,cosx),=(sinx,)(>0),函數(shù)f(x)=·,且f(x)圖象上一個(gè)最高點(diǎn)的坐標(biāo)為(,2),與之相鄰的一個(gè)最低點(diǎn)的坐標(biāo)為(,-2).
(1)求f(x)的解析式;
(2)在△ABC中,a,b,c是角A、B、C所對(duì)的邊,且滿足a2+c2-b2=ac,求角B的大小以及f(A)的取值范圍.
查看答案和解析>>
科目: 來源:浙江省新昌中學(xué)2012屆高三上學(xué)期期中考試數(shù)學(xué)理科試題 題型:044
已知函數(shù)f(x)=ax2-2x+lnx.
(1)若f(x)無極值點(diǎn),但其導(dǎo)函數(shù)f(x)有零點(diǎn),求a的值;
(2)若f(x)有兩個(gè)極值點(diǎn),求a的取值范圍,并證明f(x)的極小值小于.
查看答案和解析>>
科目: 來源:浙江省新昌中學(xué)2012屆高三上學(xué)期期中考試數(shù)學(xué)理科試題 題型:044
已知A,B分別為曲線與x軸的左、右兩個(gè)交點(diǎn),直線l過點(diǎn)B且與x軸垂直,P為l上異于點(diǎn)B的點(diǎn),連結(jié)AP與曲線C交于點(diǎn)M.
(1)若曲線C為圓,M為圓弧的三等分點(diǎn),試求點(diǎn)P的坐標(biāo);
(2)設(shè)N是以BP為直徑的圓與線段BM的交點(diǎn),若O,N,P三點(diǎn)共線,求a的值.
查看答案和解析>>
科目: 來源:浙江省新昌中學(xué)2012屆高三上學(xué)期期中考試數(shù)學(xué)理科試題 題型:044
三棱錐A-BCD中,平面ABD⊥平面ACD,,,∠CAD=30°.
(1)求證:AB⊥CD;
(2)建立如圖直角坐標(biāo)系,使AB在z軸上,AC在y軸上試寫出點(diǎn)D的坐標(biāo),并求二面角A―BC―D的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com