相關(guān)習(xí)題
 0  152876  152884  152890  152894  152900  152902  152906  152912  152914  152920  152926  152930  152932  152936  152942  152944  152950  152954  152956  152960  152962  152966  152968  152970  152971  152972  152974  152975  152976  152978  152980  152984  152986  152990  152992  152996  153002  153004  153010  153014  153016  153020  153026  153032  153034  153040  153044  153046  153052  153056  153062  153070  266669 

科目: 來源: 題型:解答題

霧霾大氣嚴(yán)重影響人們生活,某科技公司擬投資開發(fā)新型節(jié)能環(huán)保產(chǎn)品,策劃部制定投資計(jì)劃時,不僅要考慮可能獲得的盈利,而且還要考慮可能出現(xiàn)的虧損,經(jīng)過市場調(diào)查,公司打算投資甲、乙兩個項(xiàng)目,根據(jù)預(yù)測,甲、乙項(xiàng)目可能的最大盈利率分別為100%和60%,可能的最大虧損率分別為20%和10%,投資人計(jì)劃投資金額不超過10萬元要求確保可能的資金虧損不超過1.6萬元.
(1)若投資人用萬元投資甲項(xiàng)目,萬元投資乙項(xiàng)目,試寫出所滿足的條件,并在直角坐標(biāo)系內(nèi)做出表示、范圍的圖形;
(2)根據(jù)(1)的規(guī)劃,投資公司對甲、乙兩個項(xiàng)目投資多少萬元,才能是可能的盈利最大?

查看答案和解析>>

科目: 來源: 題型:解答題

變量x、y滿足
(1)設(shè)z=,求z的最小值;
(2)設(shè)z=x2+y2,求z的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

某營養(yǎng)師要為某個兒童預(yù)訂午餐和晚餐,已知一個單位的午餐含個單位的碳水化合物,個單位的蛋白質(zhì)和個單位的維生素;一個單位的晚餐含個單位的碳水化合物,個單位的蛋白質(zhì)和個單位的維生素.另外,該兒童這兩餐需要的營養(yǎng)中至少含個單位的碳水化合物,個單位的蛋白質(zhì)和個單位的維生素.如果一個單位的午餐、晚餐的費(fèi)用分別是元和元,那么要滿足上述的營養(yǎng)要求,并且花費(fèi)最少,應(yīng)當(dāng)為該兒童分別預(yù)訂多少個單位的午餐和晚餐?

查看答案和解析>>

科目: 來源: 題型:解答題

某公司承擔(dān)了每天至少搬運(yùn)280噸水泥的任務(wù),已知該公司有6輛A型卡車和8輛B型卡車.又已知A型卡車每天每輛的運(yùn)載量為30噸,成本費(fèi)為0.9千元;B型卡車每天每輛的運(yùn)載量為40噸,成本費(fèi)為1千元.
(1)如果你是公司的經(jīng)理,為使公司所花的成本費(fèi)最小,每天應(yīng)派出A型卡車、B型卡車各多少輛?
(2)在(1)的所求區(qū)域內(nèi),求目標(biāo)函數(shù)的最大值和最小值.

查看答案和解析>>

科目: 來源: 題型:解答題

已知關(guān)于的二次函數(shù).
(1)設(shè)集合,分別從集合P和Q中隨機(jī)取一個數(shù)作為,求函數(shù)在區(qū)間上是增函數(shù)的概率;
(2)設(shè)點(diǎn)是區(qū)域內(nèi)的隨機(jī)點(diǎn),求函數(shù)在區(qū)間上是增函數(shù)的概率.

查看答案和解析>>

科目: 來源: 題型:解答題

某營養(yǎng)師要為某個兒童預(yù)訂午餐和晚餐.已知一個單位的午餐含12個單位的碳水化合物、6個單位的蛋白質(zhì)和6個單位的維生素C;一個單位的晚餐含8個單位的碳水化合物、6個單位的蛋白質(zhì)和10個單位的維生素C.另外,該兒童這兩餐需要的營養(yǎng)中至少含64個單位的碳水化合物、42個單位的蛋白質(zhì)和54個單位的維生素C.
如果一個單位的午餐、晚餐的費(fèi)用分別是2.5元和4元,那么要滿足上述的營養(yǎng)要求,并且花費(fèi)最少,應(yīng)當(dāng)為該兒童分別預(yù)訂多少個單位的午餐和晚餐?

查看答案和解析>>

科目: 來源: 題型:解答題

已知x,y滿足約束條件,試求解下列問題.
(1)z=的最大值和最小值;
(2)z=的最大值和最小值;
(3)z=|3x+4y+3|的最大值和最小值.

查看答案和解析>>

科目: 來源: 題型:解答題

設(shè)z=2y-2x+4,其中x、y滿足條件求z的最大值和最小值.

查看答案和解析>>

科目: 來源: 題型:解答題

某公司計(jì)劃2013年在甲、乙兩個電視臺做總時間不超過300分鐘的廣告,廣告總費(fèi)用不超過9萬元,甲、乙電視臺的廣告收費(fèi)標(biāo)準(zhǔn)分別為500元/分鐘和200元/分鐘,規(guī)定甲、乙兩個電視臺為該公司所做的每分鐘廣告能給公司帶來的收益分別為0.3萬元和0.2萬元.問該公司如何分配在甲、乙兩個電視臺的廣告時間,才能使公司的收益最大,最大收益是多少萬元?

查看答案和解析>>

科目: 來源: 題型:解答題

某公司生產(chǎn)甲、乙兩種桶裝產(chǎn)品.已知生產(chǎn)甲產(chǎn)品1桶需耗A原料1kg、B原料2kg;生產(chǎn)乙產(chǎn)品1桶需耗A原料2kg,B原料1kg.每桶甲產(chǎn)品的利潤是300元,每桶乙產(chǎn)品的利潤是400元.公司在生產(chǎn)這兩種產(chǎn)品的計(jì)劃中,要求每天消耗A、B原料都不超過12kg.通過合理安排生產(chǎn)計(jì)劃,從每天生產(chǎn)的甲、乙兩種產(chǎn)品中,公司共可獲得的最大利潤是多少?

查看答案和解析>>

同步練習(xí)冊答案