相關(guān)習(xí)題
 0  203136  203144  203150  203154  203160  203162  203166  203172  203174  203180  203186  203190  203192  203196  203202  203204  203210  203214  203216  203220  203222  203226  203228  203230  203231  203232  203234  203235  203236  203238  203240  203244  203246  203250  203252  203256  203262  203264  203270  203274  203276  203280  203286  203292  203294  203300  203304  203306  203312  203316  203322  203330  266669 

科目: 來(lái)源: 題型:

函數(shù)f(x)=lnx-
2
x
的零點(diǎn)所在的區(qū)間是( 。
A、(1,2)
B、(2,3)
C、(3,4)
D、(e,+∞)

查看答案和解析>>

科目: 來(lái)源: 題型:

函數(shù)f(x)=
ax+bx≤0
logc(x+
1
9
)x>0
的部分圖象如圖所示
(1)求函數(shù)f(x)的表達(dá)式;
(2)探討關(guān)于x的方程f2(x)+b|f(x)|-1=0(b∈R)根的個(gè)數(shù).

查看答案和解析>>

科目: 來(lái)源: 題型:

BC
AB
|AB|
+
AC
|AC|
互相垂直,則△ABC形狀為
 

查看答案和解析>>

科目: 來(lái)源: 題型:

今年冬季,我國(guó)大部分地區(qū)遭遇霧霾天氣,給人們的健康、交通安全等帶來(lái)了嚴(yán)重影響.經(jīng)研究,發(fā)現(xiàn)工業(yè)廢氣等污染物排放是霧霾形成和持續(xù)的重要因素,污染治理刻不容緩.為此,某工廠新購(gòu)置并安裝了先進(jìn)的廢氣處理設(shè)備,使產(chǎn)生的廢氣經(jīng)過(guò)過(guò)濾后排放,以降低對(duì)空氣的污染.已知過(guò)濾過(guò)程中廢氣的污染物數(shù)量P(單位:mg/L)與過(guò)濾時(shí)間t(單位:小時(shí))間的關(guān)系為P(t)=P0e-k t(P0,k均為非零常數(shù),e為自然對(duì)數(shù)的底數(shù)),其中P0為t=0時(shí)的污染物數(shù)量.若經(jīng)過(guò)5小時(shí)過(guò)濾后還剩余90%的污染物.
(Ⅰ)求常數(shù)k的值;
(Ⅱ)試計(jì)算污染物減少到40%至少需要多少時(shí)間(精確到1小時(shí),參考數(shù)據(jù):ln0.2≈-1.61,ln0.3≈-1.20,ln0.4=-0.92,ln0.5=-0.69,ln0.9≈-0.11).

查看答案和解析>>

科目: 來(lái)源: 題型:

若函數(shù)y=log2(ax2-2x+2)-2在區(qū)間[
1
2
,2]上只有一個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍為
 

查看答案和解析>>

科目: 來(lái)源: 題型:

某文具店購(gòu)進(jìn)一批新型臺(tái)燈,若按每盞臺(tái)燈15元的價(jià)格銷(xiāo)售.每天能賣(mài)出30盞,若售價(jià)每提高1元,日銷(xiāo)售量將減少2盞.
(1)設(shè)這批臺(tái)燈提價(jià)后每盞的銷(xiāo)售價(jià)格定為x,銷(xiāo)售收入為y,寫(xiě)出y=f(x).
(2)為了使這批臺(tái)燈每天獲得400元以上的銷(xiāo)售收入,問(wèn)應(yīng)如何制定這批臺(tái)燈每盞的銷(xiāo)售價(jià)格范圍?

查看答案和解析>>

科目: 來(lái)源: 題型:

如果三棱錐的每條側(cè)棱和底面的邊長(zhǎng)都是a,那么這個(gè)三棱錐的外接球的體積是( 。
A、
6
8
πa3
B、
2
6
27
πa3
C、
8
6
9
πa3
D、
6
6
πa3

查看答案和解析>>

科目: 來(lái)源: 題型:

已知a,b是異面直線(xiàn),直線(xiàn)c∥a,那么c與b(  )
A、一定是異面
B、一定是相交直線(xiàn)
C、不可能是相交直線(xiàn)
D、不可能是平行直線(xiàn)

查看答案和解析>>

科目: 來(lái)源: 題型:

已知關(guān)于x的函數(shù)fn(x)=cosnx+cosn(x+
3
)+cosn(x+
3
),其中n∈N*
(1)求fn(0)和fn
π
2
);
(2)求證:對(duì)任意x∈R,f2(x)為定值;
(3)對(duì)任意x∈R,是否存在最大的正整數(shù)n,使得函數(shù)y=fn(x)為定值?若存在,求出n的最大值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目: 來(lái)源: 題型:

已知函數(shù)f(x)=2cosxsinx(x-
π
3
)+
3
sin2x+sinxcosx.
(1)求函數(shù)y=f(x)圖象的對(duì)稱(chēng)中心;
(2)若2f(x)-m+1=0在[
π
6
,
12
]有兩個(gè)相異的實(shí)根,求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案