相關(guān)習(xí)題
 0  211572  211580  211586  211590  211596  211598  211602  211608  211610  211616  211622  211626  211628  211632  211638  211640  211646  211650  211652  211656  211658  211662  211664  211666  211667  211668  211670  211671  211672  211674  211676  211680  211682  211686  211688  211692  211698  211700  211706  211710  211712  211716  211722  211728  211730  211736  211740  211742  211748  211752  211758  211766  266669 

科目: 來(lái)源: 題型:

已知4sin2α-3sinαcosα-5cos2α=1,α是第四象限角,求tan(
2
-α)的值.

查看答案和解析>>

科目: 來(lái)源: 題型:

已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且a2+a7+a12=-6,S20=-110.
(1)求數(shù)列{an}的通項(xiàng)an
(2)若等比數(shù)列{bn}的前n項(xiàng)和為T(mén)n,b1=4,公比q=-
1
2
,且對(duì)任意的m,n∈N*,都有Sn<Tm+t,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目: 來(lái)源: 題型:

數(shù)列{an}中,a1=1,a2=2,數(shù)列{anan+1}是公比為q(q>0)的等比數(shù)列.
(Ⅰ)求使anan+1+an+1an+2>an+2an+3成立的q的取值范圍;
(Ⅱ)求數(shù)列{an}的前2n項(xiàng)的和S2n

查看答案和解析>>

科目: 來(lái)源: 題型:

已知f(x)=aln(x-1),g(x)=x2+bx,F(xiàn)(x)=f(x+1)-g(x),其中a,b∈R.
(I)若y=f(x)與y=g(x)的圖象在交點(diǎn)(2,k)處的切線互相垂直,求a,b的值;
(Ⅱ)當(dāng)b=2-a,a>0時(shí),求F(x)的最大值;
(Ⅲ)若x=2是函數(shù)F(x)的一個(gè)極值點(diǎn),x0和1是F(x)的兩個(gè)零點(diǎn),且x0∈(n,n+1),n∈N,求n.

查看答案和解析>>

科目: 來(lái)源: 題型:

已知函數(shù)f(x)=x-x2+3lnx
(Ⅰ)求在P(1,0)處的切線方程;
(Ⅱ)證明f(x)≤2x-2.

查看答案和解析>>

科目: 來(lái)源: 題型:

如圖,在正三棱柱ABC-A1B1C1中,AA1=A1B1=4,D、E分別為AA1與A1B1的中點(diǎn).
(1)求異面直線C1D與BE的夾角;
(2)求四面體BDEC1體積.

查看答案和解析>>

科目: 來(lái)源: 題型:

2014年2月7日國(guó)務(wù)院召開(kāi)常務(wù)會(huì)議決定合并新型農(nóng)村社會(huì)養(yǎng)老保險(xiǎn)和城鎮(zhèn)居民社會(huì)養(yǎng)老保險(xiǎn),建立全國(guó)統(tǒng)一的城鄉(xiāng)居民基本養(yǎng)老保險(xiǎn)制度,某街道社區(qū)N名居民接受當(dāng)?shù)仉娨暸_(tái)就該項(xiàng)制度的采訪,他們的年齡在25隨至50歲之間.按年齡分5組:[25,30),[30,35),[35,40),[40,45),[45,50],得到的頻率分布直方圖如圖所示,如表是年齡的頻數(shù)分布表.
區(qū)間 [25,30) [30,35) [35,40) [40,45) [45,50]
人數(shù)  25  a  b    
(Ⅰ)求正整數(shù)a,b,N的值;
(Ⅱ)現(xiàn)要從年齡較小的前3組中用分層抽樣的方法抽取6人,則年齡在地1,2,3組的人數(shù)分別是多少?
(Ⅲ)在(Ⅱ)條件下,從這6人中隨機(jī)抽取2人參加社區(qū)宣傳交流活動(dòng),用列舉法求恰有1人在第3組的頻率.

查看答案和解析>>

科目: 來(lái)源: 題型:

已知函數(shù)f(x)=ln(x+1)+mx(m∈R).
(Ⅰ)當(dāng)x=1時(shí),函數(shù)f(x)取得極大值,求實(shí)數(shù)m的值;
(Ⅱ)已知結(jié)論:若函數(shù)f(x)=ln(x+1)+mx(m∈R)在區(qū)間(a,b)內(nèi)存在導(dǎo)數(shù),則存在x0∈(a,b),使得f′(x0)=
f(b)-f(a)
b-a
.試用這個(gè)結(jié)論證明:若函數(shù)g(x)=
f(x1)-f(x2)
x1-x2
(x-x1)+f(x1),(其中x2>x1>-1),則對(duì)任意x∈(x1,x2),都有f(x)>g(x);
(Ⅲ)已知正數(shù)λ1,λ2滿足λ12=1,求證:對(duì)任意的實(shí)數(shù)x1,x2,若x2>x1>-1時(shí),都有f(λ1x12x2)>λ1f(x1)+λ2f(x2).

查看答案和解析>>

科目: 來(lái)源: 題型:

已知圓C的半徑為2,圓心在x軸的正半軸上,直線3x-4y+4=0與圓C相切,
(1)求圓C的方程;
(2)過(guò)點(diǎn)Q(0,-3)斜率為k的直線l與圓C交于不同的兩點(diǎn)A(x1,y1),B(x2,y2),
①當(dāng)k=3時(shí),求x1•x2+y1•y2的值;
②當(dāng)x1•x2+y1•y2=8時(shí),求直線l的方程.

查看答案和解析>>

科目: 來(lái)源: 題型:

已知cosα=-
4
5
,且α為第三象限角,求sin(5π+α),tan(π-α),sin4α+cos4α的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案