相關(guān)習(xí)題
 0  224306  224314  224320  224324  224330  224332  224336  224342  224344  224350  224356  224360  224362  224366  224372  224374  224380  224384  224386  224390  224392  224396  224398  224400  224401  224402  224404  224405  224406  224408  224410  224414  224416  224420  224422  224426  224432  224434  224440  224444  224446  224450  224456  224462  224464  224470  224474  224476  224482  224486  224492  224500  266669 

科目: 來源: 題型:解答題

10.研究表明:提高過江大橋的車輛通行能力可改善整個(gè)城市的交通狀況.在一般情況下,大橋上的車流速度v(單位:千米/小時(shí))是車流密度x(單位:輛/千米)的函數(shù),當(dāng)橋上的車流密度達(dá)到200輛/千米時(shí),造成堵塞,此時(shí)車流速度為v(x)=0;當(dāng)車流密度不超過20輛/千米時(shí),車流速度為60千米/小時(shí);當(dāng)20≤x≤200時(shí),車流速度v(x)是車流密度x的一次函數(shù).
(1)當(dāng)0≤x≤200時(shí),求函數(shù)v(x)的表達(dá)式.
(2)設(shè)車流量f(x)=v(x)•x,求當(dāng)車流密度為多少時(shí),車流量最大?

查看答案和解析>>

科目: 來源: 題型:選擇題

9.若函數(shù)f(x)=x2-x+1,x∈[-1,1],不等式f(x)>2x+m恒成立,則m的取值范圍是( 。
A.(-∞,-1)B.(-∞,3)C.(-1,3)D.(3,+∞)

查看答案和解析>>

科目: 來源: 題型:選擇題

8.定義在R的奇函數(shù)f(x),當(dāng)x<0時(shí),f(x)=-x2+x,則x>0時(shí),f(x)等于( 。
A.x2+xB.-x2+xC.-x2-xD.x2-x

查看答案和解析>>

科目: 來源: 題型:解答題

7.如圖,正方體ABCD-A1B1C1D1的棱長為a,$\frac{AN}{NC}=\frac{BM}{{M{C_1}}}=3$.
(Ⅰ)求MN的長;
(Ⅱ)求異面直線D1M與AC所成角的余弦值.

查看答案和解析>>

科目: 來源: 題型:解答題

6.(1)要使直線l1:(2m2+m-3)x+(m2-m)y=2m與直線l2:x-y=1平行,求m的值.
(2)直線l1:ax+(1-a)y=3與直線l2:(a-1)x+(2a+3)y=2互相垂直,求a的值.

查看答案和解析>>

科目: 來源: 題型:填空題

5.若直線$\sqrt{3}$x-y-1=0與x-ay=0的夾角是$\frac{π}{6}$,則實(shí)數(shù)a的值為$\sqrt{3}$或0.

查看答案和解析>>

科目: 來源: 題型:填空題

4.直線l過點(diǎn)(3,-1),且與向量$\overrightarrow n=(2,-3)$垂直,直線l的點(diǎn)法向式方程為2(x-3)-3(y+1)=0.

查看答案和解析>>

科目: 來源: 題型:解答題

3.已知0<α<$\frac{π}{2}$,sinα=$\frac{4}{5}$.
(1)求tanα的值;
(2)求cosα+sin(α+$\frac{π}{2}$)的值.

查看答案和解析>>

科目: 來源: 題型:選擇題

2.如圖,正方體ABCD-A1B1C1D1的棱長為1,線段B1D1上有兩個(gè)動(dòng)點(diǎn)E,F(xiàn),且EF=$\frac{\sqrt{2}}{2}$,則下列結(jié)論中錯(cuò)誤的個(gè)數(shù)是( 。
(1)AC⊥BE;
(2)若P為AA1上的一點(diǎn),則P到平面BEF的距離為$\frac{\sqrt{2}}{2}$;
(3)三棱錐A-BEF的體積為定值;
(4)在空間與三條直線DD1,AB,B1C1都相交的直線有無數(shù)條.
A.0B.1C.2D.3

查看答案和解析>>

科目: 來源: 題型:解答題

1.已知數(shù)列{an}滿足${4^{a_1}}×{4^{a_2}}×{4^{a_3}}×…×{4^{a_n}}={2^{n(n+1)}}$
(1)求數(shù)列{an}的通項(xiàng)公式
(2)設(shè)bn=1+tanan+1•tanan+2,求數(shù)列{bn}的前n項(xiàng)和.

查看答案和解析>>

同步練習(xí)冊答案