相關(guān)習(xí)題
 0  227561  227569  227575  227579  227585  227587  227591  227597  227599  227605  227611  227615  227617  227621  227627  227629  227635  227639  227641  227645  227647  227651  227653  227655  227656  227657  227659  227660  227661  227663  227665  227669  227671  227675  227677  227681  227687  227689  227695  227699  227701  227705  227711  227717  227719  227725  227729  227731  227737  227741  227747  227755  266669 

科目: 來源: 題型:填空題

14.若實數(shù)x,y滿足$\left\{\begin{array}{l}{x+y≥0}\\{x≤1}\\{x-2y≥0}\end{array}\right.$,則|x|+|y|的取值范圍是[0,2].

查看答案和解析>>

科目: 來源: 題型:填空題

13.設(shè)函數(shù)f(x)=$2sin(wx+\frac{π}{6})(w>0,x∈R)$,最小正周期T=π,則實數(shù)ω=2,函數(shù)f(x)的圖象的對稱中心為($\frac{kπ}{2}$-$\frac{π}{12}$,0),k∈Z,單調(diào)遞增區(qū)間是[kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$],k∈Z.

查看答案和解析>>

科目: 來源: 題型:選擇題

12.設(shè)x∈(0,π),若$\frac{1}{sinx}+\frac{1}{cosx}=2\sqrt{2}$,則$sin(2x+\frac{π}{3})$=(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.-$\frac{1}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目: 來源: 題型:選擇題

11.設(shè)集合A={x|x2-2x≤0},B={y|y=x2-2x,x∈A},則A∪B=( 。
A.[-1,2]B.[0,2]C.(-∞,2]D.[0,+∞)

查看答案和解析>>

科目: 來源: 題型:填空題

10.設(shè)實數(shù)x,y滿足不等式組$\left\{\begin{array}{l}x≥1\\ y≥1\\ x-y+1≥0\\ x+y≤6\end{array}\right.$,則z=$\frac{x+2y}{x+y}$的取值范圍是[$\frac{7}{6}$,$\frac{5}{3}$].

查看答案和解析>>

科目: 來源: 題型:解答題

9.如圖,在四棱錐P-ABCD中,底面ABCD是直角梯形,AB⊥AD,AD∥BC,側(cè)棱PA⊥底面ABCD,且PA=AB=BC=2,AD=1.
(Ⅰ)試作出平面PAB與平面PCD的交線EP(不需要說明畫法和理由);
(Ⅱ)求證:直線EP⊥平面PBC.

查看答案和解析>>

科目: 來源: 題型:填空題

8.已知圓O:x2+y2=r2與圓C:(x-2)2+y2=r2(r>0)的一個公共點P,過P作與x軸平行的直線分別交兩圓于A,B兩點(不同于P點),且OA⊥OB,則r=2.

查看答案和解析>>

科目: 來源: 題型:解答題

7.已知函數(shù)$g(x)=\frac{{{4^x}-a}}{2^x}$是奇函數(shù),f(x)=lg(10x+1)+bx是偶函數(shù).
(1)求a+b的值.
(2)若對任意的t∈[0,+∞),不等式g(t2-2t)+g(2t2-k)>0恒成立,求實數(shù)k的取值范圍.
(3)設(shè)$h(x)=f(x)+\frac{1}{2}x$,若存在x∈(-∞,1],使不等式g(x)>h[lg(10a+9)]成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

6.已知集合A={x|$\frac{1}{4}$≤2x≤128},B={y|y=log2x,x∈[$\frac{1}{8}$,32].
(1)若C={x|m+1≤x≤2m-1},C⊆(A∩B),求實數(shù)m的取值范圍.
(2)若D={x|x>6m+1},且(A∪B)∩D=∅,求實數(shù)m的取值范圍.

查看答案和解析>>

科目: 來源: 題型:填空題

5.已知函數(shù)$f(x)=\left\{\begin{array}{l}-{x^2}-2x,x≤0\\|{lgx}|,x>0\end{array}\right.$,若關(guān)于x的方程f(x)=a有四個根x1,x2,x3,x4,則這四個根之和x1+x2+x3+x4的取值范圍是$({0,\frac{81}{10}})$.

查看答案和解析>>

同步練習(xí)冊答案