分析 (1)由條件利用函數(shù)的奇偶性的性質(zhì)求得a、b的值,可得a+b的值.
(2)由條件利用函數(shù)的單調(diào)性求得3t2-2t>k,t∈[0,+∞)恒成立,求得3t2-2t的最小值,可得k的范圍.
(3)由題意可得存在x∈(-∞,1],使不等式g(x)>lg(10a+10)成立,求得g(x)的最大值,可得a的范圍.
解答 解:(1)由g(0)=0得a=1,則$g(x)=\frac{{{4^x}-1}}{2^x}$,經(jīng)檢驗(yàn)g(x)是奇函數(shù).
由f(-1)=f(1)得$b=-\frac{1}{2}$,則$f(x)=lg({10^x}+1)-\frac{1}{2}x$,經(jīng)檢驗(yàn)f(x)是偶函數(shù),
∴$a+b=\frac{1}{2}$.
(2)∵$g(x)=\frac{{{4^x}-1}}{2^x}={2^x}-\frac{1}{2^x}$,且g(x)在(-∞,+∞)單調(diào)遞增,且g(x)為奇函數(shù).
∴由g(t2-2t)+g(2t2-k)>0恒成立,得g(t2-2t)>-g(2t2-k)=g(-2t2+k),
∴t2-2t>-2t2+k,t∈[0,+∞)恒成立,
即3t2-2t>k,t∈[0,+∞)恒成立,
令F(x)=3t2-2t,在[0,+∞)上F(x)的最小值為$F(\frac{1}{3})=-\frac{1}{3}$,∴$k<-\frac{1}{3}$.
(3)h(x)=lg(10x+1),h(lg(10a+9))=lg[10lg(10a+9)+1]=lg(10a+10),
則由已知得,存在x∈(-∞,1],使不等式g(x)>lg(10a+10)成立,
而g(x)在(-∞,1]單增,∴${g_{max}}(x)=g(1)=\frac{3}{2}$,
∴$lg(10a+10)<\frac{3}{2}=lg{10^{\frac{3}{2}}}={lg^{10\sqrt{10}}}$,∴$10a+10<10\sqrt{10}$.
又$a<\sqrt{10}-1$,
∵$\left\{\begin{array}{l}10a+9>0\\ 10a+10>0\end{array}\right.$,∴$a>-\frac{9}{10}$,
∴$-\frac{9}{10}<a<\sqrt{10}-1$.
點(diǎn)評 本題主要考查函數(shù)的奇偶性的性質(zhì),函數(shù)的單調(diào)性,函數(shù)的恒成立與能成立問題,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | p∧q | B. | (¬p)∧q | C. | p∧(¬q) | D. | (¬p)∧(¬q) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-$\frac{1}{7}$,$\frac{1}{2}$) | B. | (-∞,-$\frac{1}{7}$)∪($\frac{1}{2}$,+∞) | C. | [-$\frac{1}{7}$,$\frac{1}{2}$) | D. | (-$\frac{1}{7}$,$\frac{1}{2}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -3.3 m/s | B. | 3.3 m/s | C. | -11.6 m/s | D. | 11.6 m/s |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | -$\frac{1}{2}$ | D. | -$\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2}{3}\overrightarrow{AB}+\frac{1}{3}\overrightarrow{AD}$ | B. | $\frac{1}{3}\overrightarrow{AB}+\frac{2}{3}\overrightarrow{AD}$ | C. | $\frac{3}{4}\overrightarrow{AB}+\frac{3}{4}\overrightarrow{AD}$ | D. | $\frac{2}{3}\overrightarrow{AB}+\frac{2}{3}\overrightarrow{AD}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-2,-1] | B. | [-1,2) | C. | [-2,1] | D. | [1,2) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com