相關(guān)習題
 0  227684  227692  227698  227702  227708  227710  227714  227720  227722  227728  227734  227738  227740  227744  227750  227752  227758  227762  227764  227768  227770  227774  227776  227778  227779  227780  227782  227783  227784  227786  227788  227792  227794  227798  227800  227804  227810  227812  227818  227822  227824  227828  227834  227840  227842  227848  227852  227854  227860  227864  227870  227878  266669 

科目: 來源: 題型:填空題

1.設(shè)橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點為F1,F(xiàn)2,過點F1的直線與橢圓C相交于A,B兩點,若$\overrightarrow{A{F}_{1}}$=$\frac{3}{2}$$\overrightarrow{{F}_{1}B}$,∠AF2B=90°,則橢圓C的離心率是$\frac{\sqrt{5}}{5}$.

查看答案和解析>>

科目: 來源: 題型:解答題

20.某小學五年級一次考試中,五名同學的語文、英語成績?nèi)绫硭荆?br />
學生A1A2A3A4A5
語文(x分)8991939597
英語(y分)8789899293
(1)請在下圖的直角坐標系中作出這些數(shù)據(jù)的散點圖,并求出這些數(shù)據(jù)的回歸方程;
(2)要從4名語文成績在90分以上的同學中選2人參加一項活動,以X表示選中的同學的英語成績高于90分的人數(shù),求隨機變量X不小于1的概率.
附:回歸直線的斜率和截距的最小二乘法估計公式分別為:$\widehat$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

19.設(shè)ξ是隨機變量,且D(10ξ)=40,則D(ξ)等于( 。
A.400B.4C.40D.0.4

查看答案和解析>>

科目: 來源: 題型:選擇題

18.拋擲一枚硬幣,記$X=\left\{\begin{array}{l}1,{\;}^{\;}正面向上\\-1,反面向上\end{array}\right.$,則E(X)=(  )
A.0B.$\frac{1}{2}$C.1D.-1

查看答案和解析>>

科目: 來源: 題型:填空題

17.橢圓$\frac{x^2}{9}+\frac{y^2}{25}=1$的離心率=$\frac{4}{5}$.

查看答案和解析>>

科目: 來源: 題型:填空題

16.袋中有5只大小相同的乒乓球,編號為1至5,從袋中隨機抽取3只,若以ξ表示取到球中的最大號碼,則ξ的數(shù)學期望是$\frac{9}{2}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

15.已知橢圓$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)及圓O:x2+y2=a2,如圖過點B(0,a)與橢圓相切的直線l交圓O于點A,若∠AOB=60°,則橢圓的離心率為(  )
A.$\frac{\sqrt{3}}{3}$B.$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{1}{3}$

查看答案和解析>>

科目: 來源: 題型:選擇題

14.在橢圓25x2+4y2=100的弦中,以(1,-4)為中點的弦所在直線方程為( 。
A.5x+4y-11=0B.5x-4y-21=0C.25x+16y-89=0D.25x-16y-89=0

查看答案和解析>>

科目: 來源: 題型:解答題

13.某人經(jīng)營一個抽獎游戲,顧客花費2元錢可購買一次游戲機會,每次游戲中,顧客從裝有1個黑球,3個紅球,6個白球的不透明袋子中依次不放回地摸出3個球(除顏色外其他都相同),根據(jù)摸出的球的顏色情況進行兌獎.顧客獲得一等獎、二等獎、三等獎、四等獎時分別可領(lǐng)取獎金a元、10元、5元、2元.若經(jīng)營者將顧客摸出的球的顏色情況分成以下類別:A:1個黑球2個紅球;B:3個紅球;C:恰有1個白球;D:恰有2個白球;E:3個白球.且經(jīng)營者計劃將五種類別按照發(fā)生機會從小到大的順序分別對應(yīng)中一等獎、中二等獎、中三等獎、中四等獎、不中獎五個層次.
(Ⅰ)請寫出一至四等將分別對應(yīng)的類別(寫出字母即可);
(Ⅱ)若經(jīng)營者不打算在這個游戲的經(jīng)營中虧本,求a的最大值;
(Ⅲ)若a=50,當顧客摸出的第一個球是紅球時,求他領(lǐng)取的獎金的平均值.

查看答案和解析>>

科目: 來源: 題型:解答題

12.設(shè)橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$經(jīng)過點($\frac{2}{3},\frac{{2\sqrt{6}}}{3}$),且其左焦點坐標為(-1,0).
(Ⅰ)求橢圓的方程;
(Ⅱ)過橢圓的右焦點作兩條相互垂直的直線l,m,其中l(wèi)交橢圓于M,N,m交橢圓于P,Q,求|MN|+|PQ|的最小值.

查看答案和解析>>

同步練習冊答案