20.某小學(xué)五年級一次考試中,五名同學(xué)的語文、英語成績?nèi)绫硭荆?br />
學(xué)生A1A2A3A4A5
語文(x分)8991939597
英語(y分)8789899293
(1)請?jiān)谙聢D的直角坐標(biāo)系中作出這些數(shù)據(jù)的散點(diǎn)圖,并求出這些數(shù)據(jù)的回歸方程;
(2)要從4名語文成績在90分以上的同學(xué)中選2人參加一項(xiàng)活動,以X表示選中的同學(xué)的英語成績高于90分的人數(shù),求隨機(jī)變量X不小于1的概率.
附:回歸直線的斜率和截距的最小二乘法估計公式分別為:$\widehat$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$.

分析 (1)把所給的五組數(shù)據(jù)作為五個點(diǎn)的坐標(biāo)描到直角坐標(biāo)系中,得到散點(diǎn)圖,再根據(jù)所給的數(shù)據(jù)先做出數(shù)據(jù)的平均數(shù),即樣本中心點(diǎn),根據(jù)最小二乘法做出線性回歸方程的系數(shù),寫出線性回歸方程.
(2)根據(jù)題意得到變量X的可能取值,結(jié)合變量對應(yīng)的事件寫出變量的概率,即可得到結(jié)論.

解答 解:(1)散點(diǎn)圖如圖所示.…(1分)

$\overline{x}$=$\frac{89+91+93+95+97}{5}$=93,$\overline{y}$=$\frac{87+89+89+92+93}{5}$=90,$\sum_{i=1}^{5}({x}_{i}-\overline{x})^{2}$=(-4)2+(-2)2+02+22+42=40,$\sum_{i=1}^{5}({x}_{i}-\overline{x}\;)({y}_{i}-\overline{y}\;)$=(-4)×(-3)+(-2)×(-1)+0×(-1)+2×2+4×3=30,
b=$\frac{30}{40}$=0.75,b $\overline{x}$=69.75,a=$\overline{y}$-b$\overline{\;}$$\overline{x}$=20.25.     …(5分)
故這些數(shù)據(jù)的回歸方程是:$\widehat{y}$=0.75x+20.25.     …(6分)
(2)隨機(jī)變量X的可能取值為0,1,2.   …(7分)
P(X=0)=$\frac{{C}_{2}^{2}}{{C}_{4}^{2}}$=$\frac{1}{6}$;P(X=1)=$\frac{{C}_{2}^{1}{C}_{2}^{1}}{{C}_{4}^{2}}$=$\frac{2}{3}$;P(X=2)=$\frac{{C}_{2}^{1}}{{C}_{4}^{2}}$=$\frac{1}{6}$. 
則隨機(jī)變量X不小于1的概率P=P(X=1)+P(X=2)=$\frac{2}{3}$+$\frac{1}{6}$=$\frac{5}{6}$. …(10分)

點(diǎn)評 本題主要考查讀圖表、線性回歸方程、概率等基礎(chǔ)知識,考查運(yùn)用概率統(tǒng)計知識解決簡單實(shí)際問題的能力,數(shù)據(jù)處理能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.過點(diǎn)(3,1)作圓(x-2)2+(y-2)2=4的弦,其中最短的弦長為( 。
A.$\sqrt{2}$B.$2\sqrt{2}$C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.人的體重是人的身體素質(zhì)的重要指標(biāo)之一.某校抽取了高二的部分學(xué)生,測出他們的體重(公斤),體重在40公斤至65公斤之間,按體重進(jìn)行如下分組:第1組[40,45),第2組[45,50),第3組[50,55),第4組[55,60),第5組[60,65],并制成如圖所示的頻率分布直方圖,已知第1組與第3組的頻率之比為1:3,第3組的頻數(shù)為90.
(Ⅰ)求該校抽取的學(xué)生總數(shù)以及第2組的頻率;
(Ⅱ)用這些樣本數(shù)據(jù)估計全市高二學(xué)生(學(xué)生數(shù)眾多)的體重.若從全市高二學(xué)生中任選5人,設(shè)X表示這5人中體重不低于55公斤的人數(shù),求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.為普及學(xué)生安全逃生知識與安全防護(hù)能力,某學(xué)校高一年級舉辦了安全知識與安全逃生能力競賽,該競賽分為預(yù)賽和決賽兩個階段,預(yù)賽為筆試,決賽為技能比賽,現(xiàn)將所有參賽選手參加筆試的成績(得分均為整數(shù),滿分為100分)進(jìn)行統(tǒng)計,制成如下頻率分布表.
分?jǐn)?shù)(分?jǐn)?shù)段)頻數(shù)(人數(shù))頻率
[60,70)9x
[70,80)y0.38
[80,90)160.32
[90,100)zs
合計p1
(1)求出上表中的x,y,z,s,p的值;
(2)按規(guī)定,預(yù)賽成績不低于90分的選手參加決賽.已知高一(2)班有甲、乙兩名同學(xué)取得決賽資格,記高一(2)班在決賽中進(jìn)入前三名的人數(shù)為X,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知橢圓$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)及圓O:x2+y2=a2,如圖過點(diǎn)B(0,a)與橢圓相切的直線l交圓O于點(diǎn)A,若∠AOB=60°,則橢圓的離心率為( 。
A.$\frac{\sqrt{3}}{3}$B.$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.當(dāng)|x|≤1時,不等式2px2+qx-p+1≥0恒成立,求p+q的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.化簡$\frac{sin(α+π)cos(π-α)sin(\frac{5}{2}π-α)}{tan(-α)co{s}^{2}(-α-2π)}$=-cosα.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知曲線E上的點(diǎn)M(x,y)到點(diǎn)F(2,0)的距離與到定直線x=$\frac{5}{2}$的距離之比為$\frac{2\sqrt{5}}{5}$.
(I)求曲線E的軌跡方程;
(Ⅱ)若點(diǎn)F關(guān)于原點(diǎn)的對稱點(diǎn)為F′,則是否存在經(jīng)過點(diǎn)F的直線l交曲線E于A、B兩點(diǎn),且三角形F′AB的面積為$\frac{40}{21}$,若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.橢圓E經(jīng)過兩點(diǎn)(1,$\frac{\sqrt{2}}{2}$),($\frac{\sqrt{2}}{2}$,$\frac{\sqrt{3}}{2}$),過點(diǎn)P的動直線l與橢圓相交于A,B兩點(diǎn).
(1)求橢圓E的方程;
(2)若橢圓E的右焦點(diǎn)是P,其右準(zhǔn)線與x軸交于點(diǎn)Q,直線AQ的斜率為k1,直線BQ的斜率為k2,求證:k1+k2=0;
(3)設(shè)點(diǎn)P(t,0)是橢圓E的長軸上某一點(diǎn)(不為長軸頂點(diǎn)及坐標(biāo)原點(diǎn)),是否存在與點(diǎn)P不同的定點(diǎn)Q,使得$\frac{QA}{QB}$=$\frac{PA}{PB}$恒成立?只需寫出點(diǎn)Q的坐標(biāo),無需證明.

查看答案和解析>>

同步練習(xí)冊答案