相關(guān)習(xí)題
 0  228304  228312  228318  228322  228328  228330  228334  228340  228342  228348  228354  228358  228360  228364  228370  228372  228378  228382  228384  228388  228390  228394  228396  228398  228399  228400  228402  228403  228404  228406  228408  228412  228414  228418  228420  228424  228430  228432  228438  228442  228444  228448  228454  228460  228462  228468  228472  228474  228480  228484  228490  228498  266669 

科目: 來(lái)源: 題型:填空題

10.已知復(fù)數(shù)z=2-3i,$\overline{z}$表示復(fù)數(shù)z的共軛復(fù)數(shù),則|$\frac{\overline{z}}{i+{i}^{2}}$|=$\frac{\sqrt{26}}{2}$.

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

9.設(shè)集介A={x|1<($\frac{1}{2}$)x<8},B={x|y=lg(x2+3x+2)},從集合A中任取一個(gè)元素,則這個(gè)元素也是集合B中元素的概率是( 。
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

8.函數(shù)f(x)=$\left\{\begin{array}{l}{2x+1},{-3<x≤0}\\{1-{x}^{2}},{0<x≤3}\end{array}\right.$的定義域是{x|-3<x≤3}.

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

7.與圓x2+y2+2x-8y-24=0的圓心相同,并且經(jīng)過(guò)點(diǎn)(-1,2)的圓的方程是( 。
A.(x+1)2+(y-4)2=4B.(x+1)2+(y+4)2=4C.(x+1)2+(y-4)2=16D.(x+1)2+(y+4)2=16

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

6.若數(shù)列{an}滿足|an+1-an|=p,當(dāng)p=$\frac{1}{2}$時(shí),則稱{an}為“規(guī)則數(shù)列”;當(dāng)p=$\frac{1}{{2}^{n}}$時(shí),則稱{an}為“收縮數(shù)列”,記Sn=a1+a2+…+an
(1)若{an}是首項(xiàng)為2的“規(guī)則數(shù)列”,求a2016的不同取值個(gè)數(shù)以及最大值,求使得Sn=0成立的n的最小值
(2)已知{an}是首項(xiàng)為3的“規(guī)則數(shù)列”,求證:a99=52成立的充要條件是數(shù)列{an}是遞增數(shù)列;
(3)是否存在首項(xiàng)a1≥1的“收縮數(shù)列”{an},使得$\underset{lim}{n→∞}$Sn存在,若存在,求出極限;若不存在,請(qǐng)說(shuō)明理.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

5.求值:
(1)C${\;}_{100}^{98}$+C${\;}_{200}^{199}$;
(2)C${\;}_{7}^{3}$+C${\;}_{7}^{4}$+C${\;}_{8}^{5}$+C${\;}_{9}^{6}$.

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

4.函數(shù)f(x)=$\sqrt{4-{x}^{2}}$-$\sqrt{{x}^{2}-4}$的定義域是{-4,4}.

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

3.若f(x)=$\frac{\sqrt{{a}^{2}-{x}^{2}}}{|x+a|-a}$是奇函數(shù),則實(shí)數(shù)a的取值范圍為(0,+∞).

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

2.函數(shù)y=$\frac{1}{tanx}$的定義域是{x|x≠$\frac{kπ}{2}$,k∈Z}.

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

1.已知正數(shù)a,b滿足5-3a≤b≤4-a,lnb≥a,則$\frac{a}$的取值范圍是[e,7].

查看答案和解析>>

同步練習(xí)冊(cè)答案