相關(guān)習(xí)題
 0  228360  228368  228374  228378  228384  228386  228390  228396  228398  228404  228410  228414  228416  228420  228426  228428  228434  228438  228440  228444  228446  228450  228452  228454  228455  228456  228458  228459  228460  228462  228464  228468  228470  228474  228476  228480  228486  228488  228494  228498  228500  228504  228510  228516  228518  228524  228528  228530  228536  228540  228546  228554  266669 

科目: 來源: 題型:解答題

13.已知函數(shù)f(x)=$\frac{x+3}{x+1}$,x∈(0,+∞),數(shù)列{an}滿足an+1=f(an),n∈N*,a1=1.
(1)試比較|an+1-$\sqrt{3}$|與|an-$\sqrt{3}$|的大小,并說明理由.
(2)求證:|a1-$\sqrt{3}$|+|a2-$\sqrt{3}$|+|a3-$\sqrt{3}$|+…+|an-$\sqrt{3}$|$<\sqrt{3}$+1.

查看答案和解析>>

科目: 來源: 題型:解答題

12.已知函數(shù)f(x)=ax2+b|x-1|,其中a,b∈(-4,4)且a≠0.當(dāng)a∈(0,4),b=1時(shí),求函數(shù)f(x)在[0,2]上的最小值.

查看答案和解析>>

科目: 來源: 題型:解答題

11.定義在D上的函數(shù)f(x),若滿足:對任意x∈D,存在常數(shù)M>0,都有|f(x)|≤M成立,則稱f(x)是D上的有界函數(shù),其中M稱為函數(shù)f(x)的上界:
(1)設(shè)f(x)=$\frac{x}{x+1}$,判斷f(x)在[-$\frac{1}{2}$,$\frac{1}{2}$]上是否有界函數(shù),若是,請說明理由,并寫出f(x)的所有上界的值的集合,若不是,也請說明理由;
(2)若函數(shù)g(x)=1+a•($\frac{1}{2}$)x+($\frac{1}{4}$)x在[0,+∞)上是以3為上界的有界函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

10.定義在D上的函數(shù)f(x),若滿足:對任意x∈D,存在常數(shù)M>0,都有|f(x)|≤M成立,則稱f(x)是D上的有界函數(shù),其中M稱為函數(shù)f(x)的上界.
(1)設(shè)f(x)=$\frac{x}{x+1}$,判斷f(x)在[-$\frac{1}{2}$,$\frac{1}{2}$]上是否有有界函數(shù),若是,說明理由,并寫出f(x)上所有上界的值的集合,若不是,也請說明理由;
(2)若函數(shù)g(x)=1+2x+a•4x在x∈[0,2]上是以3為上界的有界函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

9.已知f(x)=$\left\{\begin{array}{l}{{x}^{2}+ax+1-a(x≥0)}\\{f(x+2)(x<0)}\end{array}\right.$.
(1)若a=-8,求當(dāng)-6≤x≤5時(shí),|f(x)|的最大值;
(Ⅱ)對于任意實(shí)數(shù)x1(x1≤3),存在x2(x2≠x1),使得f(x2)=f(x1),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

8.某餐廳供應(yīng)1000名學(xué)生用餐,每星期一有A、B兩種菜可供選擇,調(diào)查資料顯示星期一選A菜的學(xué)生中有20%在下周一選B菜,而選B菜的學(xué)生中有30%在下周一選A菜,用An、Bn分別表示在第n個(gè)星期一選A菜、B菜的學(xué)生數(shù),試寫出An與An-1的關(guān)系及Bn與Bn-1的關(guān)系.

查看答案和解析>>

科目: 來源: 題型:解答題

7.用反證法證明:已知0<a<1,0<b<1,0<c<1.
求證:(1-a)b,(1-b)c,(1-c)a中至少有一個(gè)不大于$\frac{1}{4}$.

查看答案和解析>>

科目: 來源: 題型:解答題

6.200多年前,10歲的高斯充分利用數(shù)字1,2,3,…,100的“對稱”特征,給出了計(jì)算1+2+3+…+100的快捷方法.教材示范了根據(jù)高斯算法的啟示推導(dǎo)等差數(shù)列的前n項(xiàng)和公式的過程.實(shí)事上,高斯算法的依據(jù)是:若函數(shù)f(x)(x∈D)的圖象關(guān)于點(diǎn)P(h,k)對稱,則f(x)+f(2h-x)=2k對x∈D恒成立.已知函數(shù)h(x)=$\frac{a^x}{{{a^x}+2}}$的圖象過點(diǎn)$({1,\frac{2}{3}})$.
(1)求a的值;
(2)化簡$h(0)+h({\frac{1}{9}})+h({\frac{2}{9}})+…+h({\frac{8}{9}})+h(1)$;
(3)設(shè)${a_n}=h(0)+h({\frac{1}{n}})+h({\frac{2}{n}})+…+h({\frac{n-1}{n}})+h(1)$,bn=$\frac{1}{{4{a_n}•{a_{n+1}}}}$,記數(shù)列{bn}的前n項(xiàng)和為Tn,若Tn<2λan+1對一切n∈N*恒成立,求λ的取值范圍.

查看答案和解析>>

科目: 來源: 題型:選擇題

5.已知?jiǎng)狱c(diǎn)P(x,y)在過點(diǎn)(-$\frac{3}{2}$,-2)且與圓M:(x-1)2+(y+2)2=5相切的兩條直線和x-y+1=0所圍成的區(qū)域內(nèi),則z=|x+2y-3|的最小值為( 。
A.$\frac{\sqrt{5}}{5}$B.1C.$\sqrt{5}$D.5

查看答案和解析>>

科目: 來源: 題型:選擇題

4.已知點(diǎn)A(-2,0),B(2,0),若圓(x-3)2+y2=r2(r>0)上存在點(diǎn)P(不同于點(diǎn)A,B)使得PA⊥PB,則實(shí)數(shù)r的取值范圍是(  )
A.(1,5)B.[1,5]C.(1,3]D.[3,5]

查看答案和解析>>

同步練習(xí)冊答案