相關(guān)習(xí)題
 0  228928  228936  228942  228946  228952  228954  228958  228964  228966  228972  228978  228982  228984  228988  228994  228996  229002  229006  229008  229012  229014  229018  229020  229022  229023  229024  229026  229027  229028  229030  229032  229036  229038  229042  229044  229048  229054  229056  229062  229066  229068  229072  229078  229084  229086  229092  229096  229098  229104  229108  229114  229122  266669 

科目: 來源: 題型:解答題

8.已知函數(shù)f(x)=$\overrightarrow a•\overrightarrow b+1$,其中向量$\overrightarrow a=(\sqrt{3},2sin\frac{ωx}{2})$,$\overrightarrow b=(sinωx,-sin\frac{ωx}{2})$,ω>0,且f(x)的最小正周期為π.
(1)求ω的值;
(2)求f(x)的最小值,并求出相應(yīng)的x的取值集合;
(3)將f(x)的圖象向左平移φ個單位,所得圖象關(guān)于點$(\frac{π}{3},0)$對稱,求φ的最小正值.

查看答案和解析>>

科目: 來源: 題型:解答題

7.在△ABC中,A,B,C的對邊分別是 a,b,c已知 3acosA=ccosB+bcosC.
(Ⅰ)求 cosA 的值;
(Ⅱ)求$cos(2A+\frac{π}{3})$的值.

查看答案和解析>>

科目: 來源: 題型:填空題

6.橢圓C1方程為$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1,雙曲線C2的方程為$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1,C1,C2的離心率之積為$\frac{\sqrt{3}}{2}$,則C2的漸近線方程為y=$±\frac{\sqrt{2}}{2}x$.

查看答案和解析>>

科目: 來源: 題型:選擇題

5.P是以F1、F2為焦點的雙曲線$\frac{x^2}{16}-\frac{y^2}{9}$=1上一點,|PF1|=6,則|PF2|等于( 。
A.14B.2C.2或14D.4

查看答案和解析>>

科目: 來源: 題型:選擇題

4.在區(qū)間[-3,3]上隨機取一個數(shù)x,使得函數(shù)f(x)=ln(1-x)+$\sqrt{x+2}$有意義的概率為( 。
A.1B.$\frac{1}{2}$C.$\frac{1}{3}$D.$\frac{1}{6}$

查看答案和解析>>

科目: 來源: 題型:選擇題

3.已知a,b∈R,直線y=ax+b+$\frac{π}{2}$與函數(shù)f(x)=tanx的圖象在x=-$\frac{π}{4}$處相切,設(shè)g(x)=ex+bx2+a,若在區(qū)間[1,2]上,不等式m≤g(x)≤m2-2恒成立,則實數(shù)m( 。
A.有最小值-eB.有最小值eC.有最大值eD.有最大值e+1

查看答案和解析>>

科目: 來源: 題型:填空題

2.已知An(an,bn)(n∈N*)是曲線C:y=ex上的點,設(shè)A1(0,1),曲線C在An處的切線交x軸于點(an+1,0),則數(shù)列{bn}的通項公式是bn=e1-n

查看答案和解析>>

科目: 來源: 題型:解答題

1.已知橢圓E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的一個焦點與拋物線y2=4x的焦點重合,橢圓E上一點到其右焦點F的最短距離為$\sqrt{2}-1$.
(Ⅰ)求橢圓E的方程;
(Ⅱ)記橢圓E的上頂點為C,是否存在直線l交橢圓E于A,B兩點,使點F恰好為△ABC的垂心?若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:解答題

20.已知平面向量$\overrightarrow{a}$=(x,2),$\overrightarrow$=(-x,x+4).
(1)求|$\overrightarrow$|的最小值;
(2)若$\overrightarrow{a}$=λ$\overrightarrow$(λ為實數(shù)),求$\overrightarrow{a}$-$\overrightarrow$.

查看答案和解析>>

科目: 來源: 題型:填空題

19.(1)在△ABC中,面積S=$\frac{{a}^{2}+^{2}-{c}^{2}}{4\sqrt{3}}$,則∠C=$\frac{π}{6}$.
(2)在△ABC中,已知BC=8,AC=5,三角形面積為12,則cos2C=$\frac{7}{25}$.

查看答案和解析>>

同步練習(xí)冊答案