相關(guān)習(xí)題
 0  229203  229211  229217  229221  229227  229229  229233  229239  229241  229247  229253  229257  229259  229263  229269  229271  229277  229281  229283  229287  229289  229293  229295  229297  229298  229299  229301  229302  229303  229305  229307  229311  229313  229317  229319  229323  229329  229331  229337  229341  229343  229347  229353  229359  229361  229367  229371  229373  229379  229383  229389  229397  266669 

科目: 來源: 題型:解答題

1.在△ABC中,角A,B,C所對的邊為a,b,c.已知2acosB=$\sqrt{3}$(bcosC+ccosB).
(Ⅰ)求B的值;
(Ⅱ)若c=$\sqrt{3}$b,△ABC的面積為2$\sqrt{3}$,求a,b的值.

查看答案和解析>>

科目: 來源: 題型:解答題

20.為分析肥胖程度對總膽固醇與空腹血糖的影響,在肥胖人群中隨機(jī)抽出8人,他們的肥胖指數(shù)BMI值、總膽固醇TC指標(biāo)(單位:mmol/L)、空腹血糖CLU指標(biāo)值(單位:mmol/L)如表所示.
人員編號12345678
BMI值x2527303233354042
TC指標(biāo)值y5.35.45.55.65.76.56.97.1
CLU指標(biāo)值z6.77.27.38.08.18.69.09.1
(1)用變量y與x,z與x的相關(guān)系數(shù),分別說明TC指標(biāo)值與BMI值、CLU指標(biāo)值與BMI值的相關(guān)程度;
(2)求y與x的線性回歸方程,已知TC指標(biāo)值超過5.2為總膽固醇偏高,據(jù)此模型分析當(dāng)BMI值達(dá)到多大時,需要注意監(jiān)控總膽固醇偏高情況的出現(xiàn)(上述數(shù)據(jù)均要精確到0.01).
參考公式:相關(guān)系數(shù)r=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sqrt{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}}$
回歸直線y=$\stackrel{∧}$x+a,其中b=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,a=$\overline{y}$-b$\overline{x}$
參考數(shù)據(jù):$\overline{x}$=33,$\overline{y}$=6,$\overline{z}$=8,$\sum_{i=1}^{8}({x}_{i}-\overline{x})^{2}$≈244,$\sum_{i=1}^{8}({y}_{i}-\overline{y})^{2}$≈3.6,$\sum_{i=1}^{8}({z}_{i}-\overline{z})^{2}$≈5.4,$\sum_{i=1}^{8}({x}_{i}-\overline{x})({y}_{i}-\overline{y})$≈28.3,$\sum_{i=1}^{8}({x}_{i}-\overline{x})({z}_{i}-\overline{z})$≈35.4,$\sqrt{244}$≈15.6,$\sqrt{3.6}$≈1.9,$\sqrt{5.4}$≈2.3.

查看答案和解析>>

科目: 來源: 題型:解答題

19.設(shè)函數(shù)f(x)=2sinxcos2$\frac{φ}{2}$+cosxsinφ-sinx(0<φ<π)在x=π處取得最小值,且滿足cos2C-cos2A=2sin($\frac{π}{3}$+C)sin($\frac{π}{3}$-C).
(1)求φ的值;
(2)在△ABC中,a,b,c分別是角A,B,C的對邊,已知a=1,b=$\sqrt{2}$,f(A)=$\frac{{\sqrt{3}}}{2}$,求角C.

查看答案和解析>>

科目: 來源: 題型:解答題

18.△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,已知A=30°,B=45°,a=$\sqrt{2}$.
(1)求b的長;
(2)求△ABC的面積.

查看答案和解析>>

科目: 來源: 題型:填空題

17.設(shè)△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,且a=2,b=3,cosC=$\frac{1}{3}$,則sinA=$\frac{{4\sqrt{2}}}{9}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

16.設(shè)a,b,c為三角形ABC三邊長,a≠1,b<c,若$\sqrt{3}$sinA+cosA=$\sqrt{2}$,且$\frac{1}{lo{g}_{c-b}a}$+$\frac{1}{lo{g}_{c+b}a}$=2,則B角大小為(  )
A.$\frac{π}{12}$B.$\frac{π}{6}$C.$\frac{π}{4}$D.$\frac{5π}{12}$

查看答案和解析>>

科目: 來源: 題型:解答題

15.在△ABC中,內(nèi)角A,B,C所對邊長分別是a,b,c,已知c=2,C=$\frac{π}{3}$.
(1)若△ABC的面積等于$\sqrt{3}$,求a,b;
(2)求$\frac{2}$+a的最大值.

查看答案和解析>>

科目: 來源: 題型:選擇題

14.設(shè)a,b,c為△ABC的三邊長,若c2=a2+b2,且$\sqrt{3}$sinA+cosA=$\sqrt{2}$,則∠B的大小為( 。
A.$\frac{π}{12}$B.$\frac{π}{6}$C.$\frac{π}{4}$D.$\frac{5π}{12}$

查看答案和解析>>

科目: 來源: 題型:解答題

13.(1)計算:sin6°sin42°sin66°sin78°
(2)已知α為第二象限角,且sinα=$\frac{\sqrt{15}}{4}$,求$\frac{sin(α+\frac{π}{4})}{sin2α+cos2α+1}$的值.

查看答案和解析>>

科目: 來源: 題型:解答題

12.已知tan($\frac{π}{4}$+α)=3,計算:
(1)tanα;  
(2)tan2α;       
(3)$\frac{2sinαcosα+3cos2α}{5cos2α-3sin2α}$.

查看答案和解析>>

同步練習(xí)冊答案