相關(guān)習(xí)題
 0  229674  229682  229688  229692  229698  229700  229704  229710  229712  229718  229724  229728  229730  229734  229740  229742  229748  229752  229754  229758  229760  229764  229766  229768  229769  229770  229772  229773  229774  229776  229778  229782  229784  229788  229790  229794  229800  229802  229808  229812  229814  229818  229824  229830  229832  229838  229842  229844  229850  229854  229860  229868  266669 

科目: 來源: 題型:選擇題

7.設(shè)直線y=k(x-2)(k>0)與拋物線C:y2=16x交于A、B兩點(diǎn),點(diǎn)F為直線與x軸的交點(diǎn),且$\overrightarrow{AF}$=2$\overrightarrow{FB}$,則k的值為( 。
A.$\frac{1}{4}$B.8C.$\frac{1}{2}$D.4

查看答案和解析>>

科目: 來源: 題型:解答題

6.已知拋物線C:y2=2px(p>0)的準(zhǔn)線為l,焦點(diǎn)為F,圓M的圓心在x軸的正半軸上,且與y軸相切.過原點(diǎn)作傾斜角為$\frac{π}{3}$的直線n,交l于點(diǎn)A,交圓M于另一點(diǎn)B,且AO=OB=2.
(1)求圓M和拋物線C的方程.
(2)若點(diǎn)P(x,y)(x>0)為拋物線C上的動(dòng)點(diǎn),求$\frac{\overrightarrow{PM}•\overrightarrow{PF}}{\overrightarrow{OP}•\overrightarrow{OF}}$的最小值;
(3)過l上的動(dòng)點(diǎn)Q向圓M作切線,切點(diǎn)為S、T,求證:直線ST恒過一個(gè)定點(diǎn),并求該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目: 來源: 題型:解答題

5.已知拋物線C:y2=-2px(p>0)上橫坐標(biāo)為-3的一點(diǎn)與其焦點(diǎn)的距離為4.
(1)求p的值;
(2)設(shè)動(dòng)直線y=k(x+2)與拋物線C相交于A,B兩點(diǎn),問:在x軸上是否存在與k的取值無關(guān)的定點(diǎn)M,使得∠AMB被x軸平分?若存在,求出點(diǎn)M的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目: 來源: 題型:解答題

4.已知拋物線Q:y2=2px(p>0).
(1)若Q上任意一點(diǎn)到焦點(diǎn)F的距離的最小值為1,求實(shí)數(shù)p的值.
(2)若點(diǎn)A在x軸上且在焦點(diǎn)F的右側(cè),以FA為直徑的圓與拋物線在x軸上方交于不同的兩點(diǎn)M,N,求證:FM+FN=FA.

查看答案和解析>>

科目: 來源: 題型:填空題

3.已知AB是球O的直徑,C,D為球面上兩動(dòng)點(diǎn),AB⊥CD,若四面體ABCD體積的最大值為9,則球O的表面積為36π.

查看答案和解析>>

科目: 來源: 題型:填空題

2.傾斜角為$\frac{π}{3}$的直線經(jīng)過拋物線x2=2py的焦點(diǎn),交拋物線于A,B兩點(diǎn),若三角形OAB的面積為4,其中O為坐標(biāo)原點(diǎn),則p=±2$\sqrt{2}$.

查看答案和解析>>

科目: 來源: 題型:解答題

1.過拋物線y2=4x的焦點(diǎn)F作傾斜角為$\frac{3π}{4}$的直線,交拋物線于A,B兩點(diǎn),求弦AB的長.

查看答案和解析>>

科目: 來源: 題型:選擇題

20.已知點(diǎn)P(20,b)是拋物線x2=2py(p>0)上一點(diǎn),焦點(diǎn)為F,|PF|=25,則該拋物線的方程為(  )
A.x2=20yB.x2=40yC.x2=20y或x2=40yD.x2=20y或x2=80y

查看答案和解析>>

科目: 來源: 題型:解答題

19.已知拋物線C:y2=2px(p>0)上的點(diǎn)(6,y0)到其準(zhǔn)線的距離為$\frac{15}{2}$.
(I)證明:拋物線C與直線x-y+8=0無公共點(diǎn);
(Ⅱ)若A(a,0)(a≠0)過點(diǎn)A的直線l與拋物線交于M,N兩點(diǎn),探究:是否存在定值a,使得$\frac{1}{|AM|}$$+\frac{1}{|AN|}$的值不隨直線l的變化而變化.

查看答案和解析>>

科目: 來源: 題型:解答題

18.已知拋物線C:y2=4x,定點(diǎn)D(m,0)(m>0),過D作直線l交拋物線C于A,B兩點(diǎn),E是D點(diǎn)關(guān)于坐標(biāo)原點(diǎn)O的對稱點(diǎn).
(I)求證:∠AED=∠BED;
(Ⅱ)是否存在垂直于x軸的直線l′被以AD為直徑的圓截得的弦長恒為定值,若存在,求出l′的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案