相關(guān)習題
 0  230024  230032  230038  230042  230048  230050  230054  230060  230062  230068  230074  230078  230080  230084  230090  230092  230098  230102  230104  230108  230110  230114  230116  230118  230119  230120  230122  230123  230124  230126  230128  230132  230134  230138  230140  230144  230150  230152  230158  230162  230164  230168  230174  230180  230182  230188  230192  230194  230200  230204  230210  230218  266669 

科目: 來源: 題型:選擇題

15.已知集合A={1,2,3,4},則集合B={x•y|x∈A,y∈A}中元素的個數(shù)是(  )
A.8B.9C.10D.12

查看答案和解析>>

科目: 來源: 題型:填空題

14.在△ABC中,設(shè)角A,B,C的對邊分別是a,b,c,且∠C=60°,c=$\sqrt{3}$,則$\frac{{a+2\sqrt{3}cosA}}{sinB}$=4.

查看答案和解析>>

科目: 來源: 題型:解答題

13.設(shè)滿足以下兩個條件的有窮數(shù)列a1,a2,a3,…,an為n階“期待數(shù)列”:
①a1+a2+a3+…+an=0;②|a1|+|a2|+|a3|+…+|an|=1.
(1)若等比數(shù)列{an}為2k階“期待數(shù)列”( k∈N*),求公比q;
(2)若一個等差數(shù)列{an}既是2k階“期待數(shù)列”又是遞增數(shù)列( k∈N*),求該數(shù)列的通項公式;
(3)記n階“期待數(shù)列”{ai}的前k項和為Sk(k=1,2,3,…,n).
①求證:|Sk|≤$\frac{1}{2}$;
②若存在m∈{1,2,3,…,n}使Sm=$\frac{1}{2}$,試問數(shù)列{Si}能否為n階“期待數(shù)列”?若能,求出所有這樣的數(shù)列;若不能,請說明理由.

查看答案和解析>>

科目: 來源: 題型:解答題

12.如圖所示,長方體ABCD-EFGH,底面是邊長為2$\sqrt{3}$的正方形,DH=2,P為AH中點.
(1)求四棱錐F-ABCD的體積;
(2)若點M在正方形ABCD內(nèi)(包括邊界),且三棱錐P-AMB體積是四棱錐F-ABCD體積的$\frac{1}{8}$,請指出滿足要求的點M的軌跡,并在圖中畫出軌跡圖形.

查看答案和解析>>

科目: 來源: 題型:填空題

11.已知等差數(shù)列{an}的公差d∈(0,1),且$\frac{{{{sin}^2}{a_3}-{{sin}^2}{a_7}}}{{sin({a_3}+{a_7})}}$=-1,若a1∈(-$\frac{5π}{4}$,-$\frac{9π}{8}$)時,則數(shù)列{an}的前n項和為Sn取得最小值時n的值為10.

查看答案和解析>>

科目: 來源: 題型:填空題

10.如圖所示,求一個棱長為$\sqrt{2}$的正四面體的體積,可以看成一個棱長為1的正方體切去四個角后得到,類比這種分法,一個相對棱長都相等的四面體A-BCD,其三組棱長分別為AB=CD=$\sqrt{5}$,AD=BC=$\sqrt{13}$,AC=BD=$\sqrt{10}$,則此四面體的體積為2.

查看答案和解析>>

科目: 來源: 題型:填空題

9.已知函數(shù)f(x)=3sinx+4cosx,若對任意x∈R均有f(x)≥f(α),則tanα的值等于$\frac{3}{4}$.

查看答案和解析>>

科目: 來源: 題型:解答題

8.已知a,b,c∈R,且a2+b2+c2=1
(1)求證:|a+b+c|≤$\sqrt{3}$
(2)若不等式|2x+1|+|x-1|≥(a+b+c)2對一切實數(shù)a,b,c都成立,求x的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

7.已知點Q為拋物線C:y2=2px(0<p<6)上任意一點,Q到拋物線C準線的距離與其到點N(7,8)距離之和最小值是10,過x軸的正半軸上的點T(t,0)的直線l交拋物線于A,B兩點.
(1)求拋物線方程;
(2)是否存在實數(shù)t,使得不論直線l繞點T如何轉(zhuǎn)動,$\frac{1}{|AT{|}^{2}}$+$\frac{1}{|BT{|}^{2}}$為定值?

查看答案和解析>>

科目: 來源: 題型:解答題

6.某大學在自主招生面試環(huán)節(jié)中.七位評委老師為陳小偉,李小明打出了分數(shù),要求統(tǒng)計組、復核組依次打出的分數(shù)進行統(tǒng)計,復核組拿到了有兩處污染的成績單(成績?yōu)?0-100的整數(shù))如表
 考生姓名評委01  評委02 評委03 評委04 評委05 評委06 評委07
 陳小偉 99 70 85 84 8■ 85 81
 李小明 79 9■ 84 84 86 8487 
(1)統(tǒng)計組使用莖葉圖記錄了兩位同學的成績,若評委05給陳小偉打出的分數(shù)為84分,評委02給李小明打出的分數(shù)為91分.請你結(jié)合兩處污染的成績單數(shù)據(jù)完成兩位同學成績的莖葉圖1,并比較兩位同學成績的穩(wěn)定性.
(2)若復合組將考生成績?nèi)サ粢粋最高分和一個最低分,根據(jù)有兩處污染的成績單,你能否判斷出兩位同學平均水平的高低?
(3)該大學用系統(tǒng)抽樣的方法抽取了n名學生的面試成績,制作了如圖2所示的頻率分布直方圖.
①已知圖表中第四小組(即[70,80)內(nèi))的頻數(shù)為15,求n的值;
②請你根據(jù)圖表中的信息估計樣本的眾數(shù),中位數(shù),平均數(shù)(精確到0.01)
參考公式:假設(shè)樣本數(shù)據(jù)是x1,x2,…xn,$\overline{x}$,s分別表示這組數(shù)據(jù)的平均數(shù)和標準差,則:
s=$\sqrt{\frac{({x}_{1}-\overline{x})^{2}+({x}_{2}-\overline{x})^{2}+…+({x}_{n}-\overline{x})^{2}}{n}}$.

查看答案和解析>>

同步練習冊答案