精英家教網 > 高中數學 > 題目詳情
15.已知集合A={1,2,3,4},則集合B={x•y|x∈A,y∈A}中元素的個數是( 。
A.8B.9C.10D.12

分析 利用分類討論方法求得xy的可能值,再根據集合中元素的互異性可得集合B中元素的個數.

解答 解:∵x、y∈A,
∴當x=1時,y分別為1,2,3,4時,xy分別為1,2,3,4;
當x=2時,y分別為1,2,3,4時,xy分別為2,4,6,8;
當x=3時,y分別為1,2,3,4時,xy分別為3,6,9,12;
當x=4時,y分別為1,2,3,4,xy分別為4,8,12,16;
綜上xy的值可為1,2,3,4,6,8,9,12,16共有9個.
∴集合B中元素的個數為9.
故選B.

點評 本題考查了集合的表示法及集合中元素的性質,熟練掌握描述法表示集合是解題的關鍵;注意集合元素的互異性.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

5.已知函數f(x)=2sinxcosx+2cos2x-1,求y=f(x)的周期和最值.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

6.口袋中有n(n∈N*)個白球,3個紅球.依次從口袋中任取一球,如果取到紅球,那么繼續(xù)取球,且取出的紅球不放回;如果取到白球,就停止取球.記取球的次數為X.若P(X=2)=$\frac{7}{30}$,則n的值為7.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

3.已知拋物線C:y2=8x,點P為拋物線上任意一點,過點P向圓D:x2+y2-4x+3=0作切線,切點分別為A,B,則四邊形PADB面積的最小值為$\sqrt{3}$.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

10.如圖所示,求一個棱長為$\sqrt{2}$的正四面體的體積,可以看成一個棱長為1的正方體切去四個角后得到,類比這種分法,一個相對棱長都相等的四面體A-BCD,其三組棱長分別為AB=CD=$\sqrt{5}$,AD=BC=$\sqrt{13}$,AC=BD=$\sqrt{10}$,則此四面體的體積為2.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

20.已知以拋物線x2=2py(p>0)的焦點為虛軸的一個端點的雙曲線的標準方程為$\frac{x^2}{8}$-$\frac{y^2}{b^2}$=1(b>0),拋物線的一條與雙曲線的漸近線平行的切線在y軸上的截距為-1,則p的值為4.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

7.已知實數x,y滿足不等式組$\left\{\begin{array}{l}y≥x\\ x+y-6≤0\\ 2x-y-2≥0\end{array}\right.$,且z=2x+y的最小值為m,最大值為n,則f(x)=x2-14x在區(qū)間[m,n]上的最大值和最小值之和為( 。
A.-94B.-97C.-93D.-90

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

4.已知an=$\left\{\begin{array}{l}{5n+1,n為奇數}\\{{2}^{\frac{n}{2}},n為偶數}\end{array}\right.$.
(1)求數列{an}的前10項和S10
(2)求數列{an}的前2k項和S2k

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

11.如圖,在四棱錐S-ABCD中,底面ABCD是直角梯形,側棱SA丄底面ABCD,AB垂直于AD和BC,SA=AB=BC=2,AD=1.M是棱SB的中點.
(1)求證:AM∥平面SCD;
(2)求平面SCD與平面SAB所成的二面角的余弦值;
(3)設點N是直線CD上的動點,MN與平面SAB所成的角為θ,求sinθ的最大值.

查看答案和解析>>

同步練習冊答案