相關習題
 0  231059  231067  231073  231077  231083  231085  231089  231095  231097  231103  231109  231113  231115  231119  231125  231127  231133  231137  231139  231143  231145  231149  231151  231153  231154  231155  231157  231158  231159  231161  231163  231167  231169  231173  231175  231179  231185  231187  231193  231197  231199  231203  231209  231215  231217  231223  231227  231229  231235  231239  231245  231253  266669 

科目: 來源: 題型:填空題

9.函數(shù)f(x)=x2+2x,若f(x)>a在區(qū)間[1,3]上滿足:①恒有解,則a的取值范圍為(-∞,15);②恒成立,則a的取值范圍為(-∞,3).

查看答案和解析>>

科目: 來源: 題型:填空題

8.已知a>b,c>d,則下列不等式:(1)a+c>b+d;(2)a-c>b-d;(3)ac>bd;(4)$\frac{a}{c}$>$\fraclubrryy$中恒成立的個數(shù)是1.

查看答案和解析>>

科目: 來源: 題型:選擇題

7.已知實數(shù)m,n滿足m<0,n>0,則下列說法一定正確的是(  )
A.log2(-m)>log2nB.$\frac{n}{m^3}<\frac{1}{n}$C.|m|<|n|D.$\root{3}{m}>\root{3}{n}$

查看答案和解析>>

科目: 來源: 題型:解答題

6.在平面直角坐標xOy中,已知直線l的參數(shù)方程為$\left\{\begin{array}{l}x=\frac{1}{2}t\\ y=4+\frac{{\sqrt{3}}}{2}t\end{array}\right.$(t為參數(shù)),圓O的參數(shù)方程為$\left\{\begin{array}{l}x=4cosθ\\ y=4sinθ\end{array}\right.$(θ為參數(shù)),直線l與圓O相交于A,B兩點,求|AB|.

查看答案和解析>>

科目: 來源: 題型:填空題

5.在平面直角坐標系中,曲線$\left\{\begin{array}{l}{x=cosθ}\\{y=sinθ}\end{array}\right.$(θ為參數(shù))的普通方程為x2+y2=1.

查看答案和解析>>

科目: 來源: 題型:填空題

4.已知函數(shù)f(x)=x3+3ax2+3x+1,當x∈[2,+∞),f(x)≥0恒成立,則實數(shù)a的取值范圍是[-$\frac{5}{4}$,+∞).

查看答案和解析>>

科目: 來源: 題型:解答題

3.已知函數(shù)f(x)=|2x+1|-|x-4|.
(1)解不等式f(x)≥0;
(2)若存在x0∈[-7,7],使得f(x0)+$\frac{1}{2}$m2<4m成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目: 來源: 題型:選擇題

2.已知A,B為拋物線C:y2=4x上的不同兩點,F(xiàn)為拋物線C的焦點,若$\overrightarrow{FA}$=-4$\overrightarrow{FB}$,則||FA|-|FB||=( 。
A.$\frac{13}{4}$B.$\frac{7}{2}$C.4D.$\frac{15}{4}$

查看答案和解析>>

科目: 來源: 題型:解答題

1.已知函數(shù)f(x)=xlnx
(Ⅰ)求f(x)的最小值;
(Ⅱ)求證:lnx>$\frac{1}{e^x}-\frac{2}{ex}$,x∈(0,+∞).

查看答案和解析>>

科目: 來源: 題型:解答題

20.在平面直角坐標系xOy中,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=-1+\frac{\sqrt{2}}{2}t}\\{y=2+\frac{\sqrt{2}}{2}t}\end{array}\right.$ (t為參數(shù)),曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=4cosθ}\\{y=cos2θ}\end{array}\right.$(θ為參數(shù)).
(1)將曲線C的參數(shù)方程化為普通方程;
(2)求曲線C上的點到直線l的距離的最大值.

查看答案和解析>>

同步練習冊答案