相關習題
 0  231342  231350  231356  231360  231366  231368  231372  231378  231380  231386  231392  231396  231398  231402  231408  231410  231416  231420  231422  231426  231428  231432  231434  231436  231437  231438  231440  231441  231442  231444  231446  231450  231452  231456  231458  231462  231468  231470  231476  231480  231482  231486  231492  231498  231500  231506  231510  231512  231518  231522  231528  231536  266669 

科目: 來源: 題型:解答題

3.如圖,在四邊形ABCD中,已知△ABC、△BCD、△ACD的面積之比是3:1:4,點E在邊AD上,CE交BD于G,設$\frac{BG}{GD}=\frac{DE}{EA}=k$.
(1)求$\root{3}{{7{k^2}+20}}$的值;
(2)若點H分線段BE成$\frac{BH}{HE}=2$的兩段,且AH2+BH2+DH2=p2,試用含p的代數(shù)式表示△ABD三邊長的平方和.

查看答案和解析>>

科目: 來源: 題型:解答題

2.(Ⅰ)求函數(shù)f(x)=8cosx-6cos2x+cos4x在[0,$\frac{π}{3}$)上的最小值;
(Ⅱ)設x∈(0,$\frac{π}{3}$),證明:$\frac{4}{3}$sinx-$\frac{1}{6}$sin2x<x<$\frac{8}{3}$sinx-sin2x+$\frac{1}{12}$sin4x;
(Ⅲ)設n為偶數(shù),且n≥6.單位圓內(nèi)接正n邊形面積記為Sn
(1)證明:$\frac{4}{3}$S2n一$\frac{1}{3}$Sn<π<$\frac{8}{3}$S2n一2Sn+$\frac{1}{3}{S_{\frac{n}{2}}}$;
(2)已知1.732<$\sqrt{3}$<1.733,3.105<S24<3.106,證明:3.14<π<3.15.

查看答案和解析>>

科目: 來源: 題型:選擇題

1.如圖,已知△ABC≌△AEF,AB=BC,則下列結論中則下列結論正確的結論個數(shù)為( 。
①AC=AF;②∠FAB=∠EAB;③EF=BC;④∠EAB=∠FAC.
A.1B.2C.3D.4

查看答案和解析>>

科目: 來源: 題型:選擇題

20.如圖,在△ABC中,D是BC的中點,DE⊥AB,DF⊥AC,垂足分別是E、F,BE=CF,則圖中全等的三角形有( 。⿲Γ
A.1B.2C.3D.4

查看答案和解析>>

科目: 來源: 題型:解答題

19.如圖,在等腰直角三角形ABC中,AC=BC,D是BC的中點,E是線段AB上的點,且AE=2BE.求證:AD⊥CE.

查看答案和解析>>

科目: 來源: 題型:解答題

18.設函數(shù)f(x)=|4x-1|+|x-m|.
(1)若m=2,解不等式f(x)>12;
(2)若f(x)+3|x-m|>8對一切實數(shù)x均成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

17.已知:在△ABC中,AB=AC,AB⊥AC,D、E在BC上,且∠ADC=∠BAE.
(1)求證:∠DAE=45°;
(2)過B作BF⊥AD于F,交直線AE于M,連CM,判斷BM與CM的位置關系,加以證明.

查看答案和解析>>

科目: 來源: 題型:解答題

16.如圖1,△ACB為等腰直角三角形,AC=BC,AC⊥BC,點E、F分別在BC上,且CE=BF,CM⊥AE,AE與MF的延長線相交于N點
(1)求證:∠BMF=∠AMC
(2)如圖2,若CM為AN的垂直平分線,MF與AE的延長線交于N點,求證:BM+CM=MN.
(3)若AC=2+$\sqrt{3}$,在(2)的條件下.求EF的長.

查看答案和解析>>

科目: 來源: 題型:解答題

15.如圖,在△ABC中,AD為∠BAC的平分線,AE為邊BC上的中線,已知AB=3,AC=5,AE=$\frac{7}{2}$.
(1)求角A;
(2)求AD的長.

查看答案和解析>>

科目: 來源: 題型:解答題

14.已知函數(shù)f(x)=ax2-x+3lnx,x=1是函數(shù)f(x)的一個極值點.
(1)求a的值及函數(shù)f(x)的單調(diào)區(qū)間;
(2)若僅存在一個整數(shù)x0,使得f(x0)-kx0-k>0成立,求k的取值范圍.

查看答案和解析>>

同步練習冊答案