相關(guān)習(xí)題
 0  231675  231683  231689  231693  231699  231701  231705  231711  231713  231719  231725  231729  231731  231735  231741  231743  231749  231753  231755  231759  231761  231765  231767  231769  231770  231771  231773  231774  231775  231777  231779  231783  231785  231789  231791  231795  231801  231803  231809  231813  231815  231819  231825  231831  231833  231839  231843  231845  231851  231855  231861  231869  266669 

科目: 來源: 題型:填空題

2.圓心為(1,-1),半徑為2的圓的標(biāo)準(zhǔn)方程為(x-1)2+(y+1)2=4.

查看答案和解析>>

科目: 來源: 題型:選擇題

1.若純虛數(shù)z滿足(1-i)z=1+ai,則實(shí)數(shù)a等于(  )
A.1B.2C.3D.4

查看答案和解析>>

科目: 來源: 題型:解答題

20.如圖,矩形ABCD的內(nèi)接Rt△FHE,(H是直角頂點(diǎn)),H是AB的中點(diǎn),E,F(xiàn)分別落在線段BC,AD上.已知AB=2,AD=$\sqrt{3}$,記∠BHE=θ.
(1)試將Rt△FHE的周長(zhǎng)L表示為θ的函數(shù),并寫出定義域;
(2)當(dāng)θ取何值時(shí),Rt△FHE的周長(zhǎng)L取最大值,并求出此時(shí)周長(zhǎng)L.

查看答案和解析>>

科目: 來源: 題型:解答題

19.已知a,b,c分別為△ABC內(nèi)角A、B、C的對(duì)邊,sin2B=2sinAsinC.
(1)若a=b,求cosB;
(2)設(shè)B=90°,且△ABC的面積為1,求a.

查看答案和解析>>

科目: 來源: 題型:填空題

18.已知數(shù)列{an}前n項(xiàng)和滿足Sn-Sn-1=$\sqrt{S_n}+\sqrt{{S_{n-1}}}$(n≥2),a1=1,則an=2n-1.

查看答案和解析>>

科目: 來源: 題型:解答題

17.某農(nóng)科所對(duì)冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,他們分別記錄了12月1日至12月5日的每天晝夜溫差與實(shí)驗(yàn)室每天每100顆種子中的發(fā)芽數(shù),得到如下資料:
日期12月1日12月2日12月3日12月4日12月5日
溫差x(℃)101113128
發(fā)芽y(顆)2325302616
該農(nóng)科所確定的研究方案是:先從這5組數(shù)據(jù)中選取3組數(shù)據(jù)求線性回歸方程,剩下的2組數(shù)據(jù)用于回歸方程檢驗(yàn).
(1)若選取的是12月1日與12月5日的2組數(shù)據(jù),請(qǐng)根據(jù)12月2日至12月4日的數(shù)據(jù),求出y關(guān)于x的線性回歸方程$\stackrel{∧}{y}=\stackrel{∧}x+\stackrel{∧}{a}$;
(2)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(1)中所得的線性回歸方程是否可靠?
(3)請(qǐng)預(yù)測(cè)溫差為14℃的發(fā)芽數(shù).
其中
$\widehat$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{{x}^{\;}}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$.

查看答案和解析>>

科目: 來源: 題型:解答題

16.隨機(jī)詢問某校40名不同性別的學(xué)生在購買食物時(shí)是否讀營(yíng)養(yǎng)說明,得到如下2×2列聯(lián)表:
讀營(yíng)養(yǎng)說明不讀營(yíng)養(yǎng)說明合計(jì)
16
20
合計(jì)16
(1)補(bǔ)全列聯(lián)表
(2)根據(jù)以上列聯(lián)表進(jìn)行獨(dú)立性檢驗(yàn),能否在犯錯(cuò)誤的概率不超過0.01的前提下認(rèn)為“性別與是否讀營(yíng)養(yǎng)說明之間有關(guān)系”?
附:K2=$\frac{n(ad-bc)^2}{(a+b)(c+d)(a+c)(b+d)}$.
臨界值表:
P(K2≥k)0.100.050.010
k2.7063.8416.635

查看答案和解析>>

科目: 來源: 題型:解答題

15.在四棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD為直角梯形,∠CDA=∠BAD=90°,AB=AD=2DC=2$\sqrt{2}$,PA=4且E為PB的中點(diǎn).
(1)求證:CE∥平面PAD;
(2)求直線CE與平面PAC所成角的正弦值.

查看答案和解析>>

科目: 來源: 題型:填空題

14.函數(shù)y=$\sqrt{{x}^{2}+4}$+$\sqrt{{x}^{2}-4x+13}$的最小值為$\sqrt{29}$.

查看答案和解析>>

科目: 來源: 題型:解答題

13.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左焦點(diǎn)為F(-c,0),離心率為$\frac{{\sqrt{3}}}{3}$,點(diǎn)M在橢圓上,直線FM的斜率為$\frac{{\sqrt{3}}}{3}$,直線FM被圓x2+y2=$\frac{1}{2}$截得的線段的長(zhǎng)為c.
(1)求橢圓的方程;
(2)設(shè)動(dòng)點(diǎn)P在橢圓上,若直線FP的斜率大于$\sqrt{2}$,求直線OP(O為原點(diǎn))的斜率的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案