相關(guān)習題
 0  233644  233652  233658  233662  233668  233670  233674  233680  233682  233688  233694  233698  233700  233704  233710  233712  233718  233722  233724  233728  233730  233734  233736  233738  233739  233740  233742  233743  233744  233746  233748  233752  233754  233758  233760  233764  233770  233772  233778  233782  233784  233788  233794  233800  233802  233808  233812  233814  233820  233824  233830  233838  266669 

科目: 來源: 題型:選擇題

8.設(shè)變量x,y滿足約束條件$\left\{\begin{array}{l}{x+1≥0}\\{x-y+1≤0}\\{x+y-2≤0}\end{array}\right.$,則滿足${∫}_{1}^{t}$$\frac{1}{x}$dx=4x+y的t的最大值為(  )
A.e-4B.e-1C.1D.e${\;}^{\frac{7}{2}}$

查看答案和解析>>

科目: 來源: 題型:填空題

7.若集合M={x∈N|2x-1>0},P={x∈N|x≤2},則M∩P={1,2}.

查看答案和解析>>

科目: 來源: 題型:選擇題

6.已知整數(shù)對排列如下:(1,1),(1,3),(2,2),(3,1),(1,5),(2,4),(3,3),(4,2),(5,1),…則第79個數(shù)對是( 。
A.(15,3)B.(16,2)C.(14,4)D.(17,1)

查看答案和解析>>

科目: 來源: 題型:解答題

5.已知數(shù)列{an}的前n項和為Sn滿足:Sn=$\frac{3}{2}$an+n-3.
(1)求證:數(shù)列{an-1}是等比數(shù)列.
(2)求數(shù)列{an}的通項公式.

查看答案和解析>>

科目: 來源: 題型:填空題

4.若函數(shù)f(x)=ax-$\frac{1}{x}$在(0,1]上單調(diào)遞增,那么實數(shù)a的取值范圍是a≥-1.

查看答案和解析>>

科目: 來源: 題型:選擇題

3.下列說法錯誤的是( 。
A.如果命題“非p”與命題“p∨q”都是真命題,那么命題q一定是真命題
B.命題“若a=0,則ab=0”的否命題是:“若a≠0,則ab≠0”
C.若命題p:?x0∈R,x02+2x0-3<0,則非p:?x∈R,x2+2x-3≥0
D.“a=-2”是“直線l1:ax+2y-1=0與直線l2:x+(a+1)y+4=0平行”的充要條件

查看答案和解析>>

科目: 來源: 題型:填空題

2.把正整數(shù)按上小下大、左小右大的原則排成如圖三角形數(shù)表(每行比上一行多一個數(shù)):設(shè)ai,j(i、j∈N*)是位于這個三角形數(shù)表中從上往下數(shù)第i行、從左往右數(shù)第j個數(shù),如a4,2=8.若ai,j=2015,則i、j的值分別為63,62.

查看答案和解析>>

科目: 來源: 題型:選擇題

1.設(shè)f(x)=3x+3x-8,用二分法求方程3x+3x-8=0在x∈[1,3]上的近似解的過程中取區(qū)間中點x0=2,那么方程有根區(qū)間為( 。
A.[1,2]B.[2,3]C.[1,2]或[2,3]都可以D.不能確定

查看答案和解析>>

科目: 來源: 題型:選擇題

20.已知$sin({π-α})=\frac{{\sqrt{5}}}{5}$,則sin4α-cos4α為( 。
A.$\frac{3}{5}$B.$-\frac{3}{5}$C.$\frac{4}{5}$D.$-\frac{4}{5}$

查看答案和解析>>

科目: 來源: 題型:填空題

19.定義符號函數(shù)sgn(x)=$\left\{\begin{array}{l}{\stackrel{1,x>0}{0,x=0}}\\{-1,x<0}\end{array}\right.$,
設(shè)f(x)=$\frac{sgn(\frac{1}{2}-x)+1}{2}$•f1(x)+$\frac{sgn(\frac{1}{2}-x)+1}{2}$•f2(x),x∈[0,1],其中${f_1}(x)=x+\frac{1}{2}$,f2(x)=2(1-x),若$f({f(a)})∈[{0,\frac{1}{2}}]$,則實數(shù)a的取值范圍是{$\frac{1}{2}$}.

查看答案和解析>>

同步練習冊答案