相關(guān)習(xí)題
 0  234188  234196  234202  234206  234212  234214  234218  234224  234226  234232  234238  234242  234244  234248  234254  234256  234262  234266  234268  234272  234274  234278  234280  234282  234283  234284  234286  234287  234288  234290  234292  234296  234298  234302  234304  234308  234314  234316  234322  234326  234328  234332  234338  234344  234346  234352  234356  234358  234364  234368  234374  234382  266669 

科目: 來源: 題型:解答題

19.已知f(x)=${cos^2}(x+\frac{π}{12})+\frac{1}{2}$sin2x.
(1)求函數(shù)f(x)的單調(diào)增區(qū)間;
(2)求函數(shù)f(x)的圖象在y軸右邊的第一個對稱中心的坐標(biāo).

查看答案和解析>>

科目: 來源: 題型:填空題

18.定義:若平面點集A中的任一個點(x0,y0),總存在正實數(shù)r,使得集合(x,y)|$\sqrt{{{(x-{x_0})}^2}+{{(y-{y_0})}^2}}<r\}$⊆A,則稱A為一個開集.給出下列集合:
①{(x,y)|x2+y2=1};     ②{(x,y)|x+y+2>0};
③{(x,y)||x+y|≤6};      ④$\{(x,y)|0<{x^2}+{(y-\sqrt{2})^2}<1\}$.
其中不是開集的是①③.(請寫出所有符合條件的序號)

查看答案和解析>>

科目: 來源: 題型:填空題

17.過點P(3,0)的直線l交圓C:x2+y2-4x=0于A,B兩點,C為圓心,則$\overrightarrow{CA}•\overrightarrow{CB}$的最小值為-4.

查看答案和解析>>

科目: 來源: 題型:填空題

16.(2x+1)8展開式中的中間項系數(shù)為1120.

查看答案和解析>>

科目: 來源: 題型:選擇題

15.設(shè)f(x)=x3+bx2+cx+d,又k是一個常數(shù),已知k<0或k>4時,f(x)-k=0只有一個實根,當(dāng)0<k<4時,f(x)-k=0有三個相異實根,給出下列命題:
①f(x)-4=0和f'(x)=0有一個相同的實根;
②f(x)=0和f'(x)=0有一個相同的實根;
③f(x)+3=0的任一實根大于f(x)-1=0的任一實根;
④f(x)+5=0的任一實根小于于f(x)-2=0的任一實根;
其中正確命題的個數(shù)為( 。
A.3B.2C.1D.0

查看答案和解析>>

科目: 來源: 題型:選擇題

14.給出下列四個命題:
①如果一條直線垂直于一個平面內(nèi)的無數(shù)條直線,那么這條直線與這個平面垂直;
②過空間一定點有且只有一條直線與已知平面垂直;
③如果平面外一條直線a與平面α內(nèi)一條直線b平行,那么a∥α;
④一個二面角的兩個半平面分別垂直于另一個二面角的兩個半平面,則這兩個二面角相等;
其中真命題的為( 。
A.①③B.②④C.②③D.③④

查看答案和解析>>

科目: 來源: 題型:選擇題

13.已知|$\overrightarrow a|$=2,|$\overrightarrow b$|=1,$(\overrightarrow a-\overrightarrow b)•\overrightarrow b=0$,則$\overrightarrow a$與$\overrightarrow b$的夾角為(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目: 來源: 題型:選擇題

12.設(shè){an}是正項等比數(shù)列,且a5a6=10,則lga1+lga2+…+lga9+lga10=( 。
A.5B.1+lg5C.2D.10

查看答案和解析>>

科目: 來源: 題型:選擇題

11.已知球的表面積為4π,則球的內(nèi)接正方體的邊長的長為( 。
A.$\frac{2\sqrt{3}}{3}$B.$\frac{{\sqrt{2}}}{2}$C.1D.2

查看答案和解析>>

科目: 來源: 題型:填空題

10.已知F為拋物線y2=2x的焦點,點A、B在拋物線上且位于x軸的兩側(cè),$\widehat{OA}$•$\widehat{OB}$=3(其中O為坐標(biāo)原點),則△ABO與△AFO面積之和的最小值是3$\sqrt{7}$.

查看答案和解析>>

同步練習(xí)冊答案