相關(guān)習(xí)題
 0  234361  234369  234375  234379  234385  234387  234391  234397  234399  234405  234411  234415  234417  234421  234427  234429  234435  234439  234441  234445  234447  234451  234453  234455  234456  234457  234459  234460  234461  234463  234465  234469  234471  234475  234477  234481  234487  234489  234495  234499  234501  234505  234511  234517  234519  234525  234529  234531  234537  234541  234547  234555  266669 

科目: 來源: 題型:選擇題

19.復(fù)數(shù)z1,z2在復(fù)平面內(nèi)對應(yīng)的點關(guān)于直線y=x對稱,且z1=3+2i,則$\frac{z_1}{z_2}$=( 。
A.$\frac{12}{13}+\frac{5}{13}i$B.$-\frac{12}{13}+\frac{5}{13}i$C.$-\frac{12}{13}-\frac{5}{13}i$D.$\frac{12}{13}-\frac{5}{13}i$

查看答案和解析>>

科目: 來源: 題型:選擇題

18.設(shè)集合M={x|x2-3x+2>0},集合N={x|x≤-2},則M∩N=( 。
A.{x|x>-2}B.{x|x≤-2}C.{x|x>-1}D.{x|x≥-2}

查看答案和解析>>

科目: 來源: 題型:填空題

17.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的離心率$e=\frac{{\sqrt{3}}}{2},A、B$,分別是橢圓的左、右頂點,點P是橢圓上的一點,直線PA、PB的傾斜角分別為α、β滿足tanα+tanβ=1,則直線PA的斜率為$\frac{{1±\sqrt{2}}}{2}$.

查看答案和解析>>

科目: 來源: 題型:解答題

16.已知函數(shù)f(x)=tx,(x∈R).
(1)若t=ax+b,a,b∈R,且-1≤f(-1)≤2,2≤f(1)≤4,求點(a,b)的集合表示的平面區(qū)域的面積;
(2)若t=2+$\frac{1}{{x}^{2}-x}$,(x<1且x≠0),求函數(shù)f(x)的最大值;
(3)若t=x-a-3(a∈R),不等式b2+c2-bc-3b-1≤f(x)≤a+4(b,c∈R)的解集為[-1,5],求b,c的值.

查看答案和解析>>

科目: 來源: 題型:解答題

15.為迎接“雙十一”活動,某網(wǎng)店需要根據(jù)實際情況確定經(jīng)營策略.
(1)采購員計劃分兩次購買一種原料,第一次購買時價格為a元/個,第二次購買時價格為b元/個(其中a≠b).該采購員有兩種方案:方案甲:每次購買m個;方案乙:每次購買n元.請確定按照哪種方案購買原料平均價格較。
(2)“雙十一”活動后,網(wǎng)店計劃對原價為100元的商品兩次提價,現(xiàn)有兩種方案:方案丙:第一次提價p,第二次提價q;方案。旱谝淮翁醿r$\frac{p+q}{2}$,第二次提價$\frac{p+q}{2}$,(其中p≠q)請確定哪種方案提價后價格較高.

查看答案和解析>>

科目: 來源: 題型:解答題

14.已知橢圓曲線方程為${x^2}+\frac{y^2}{n}=1(n∈R)$,兩焦點分別為F1,F(xiàn)2
(1)若n=-1,過左焦點為F1且斜率為$\sqrt{3}$的直線交圓錐曲線于點A,B,求△ABF2的周長.
(2)若n=4,P圓錐曲線上一點,求PF1•PF2的最大值和最小值.

查看答案和解析>>

科目: 來源: 題型:填空題

13.定義在R上的奇函數(shù)f(x)對任意x∈R都有f(x)=f(x+4),當(dāng)x∈(-2,0)時,f(x)=2x,則f(2016)-f(2015)=-$\frac{1}{2}$.

查看答案和解析>>

科目: 來源: 題型:填空題

12.已知偶函數(shù)f(x)在[1,4]上是單調(diào)增函數(shù),則f(-π)>$f({{{log}_2}\frac{1}{8}})$.(填“>”或“<”或“=”)

查看答案和解析>>

科目: 來源: 題型:填空題

11.3∈{x+2,x2+2x},則x=-3.

查看答案和解析>>

科目: 來源: 題型:解答題

10.設(shè)函數(shù)f(x)=x2-2tx+2,其中 t∈R.
(1)若t=1,求函數(shù)f(x)在區(qū)間[0,4]上的取值范圍;
(2)若t=1,且對任意的x∈[a,a+2],都有f(x)<5,求實數(shù)a的取值范圍;
(3)若對任意的x1,x2∈[0,4],都有f(x1)-f(x2)≤8,求t的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案