相關(guān)習(xí)題
 0  234761  234769  234775  234779  234785  234787  234791  234797  234799  234805  234811  234815  234817  234821  234827  234829  234835  234839  234841  234845  234847  234851  234853  234855  234856  234857  234859  234860  234861  234863  234865  234869  234871  234875  234877  234881  234887  234889  234895  234899  234901  234905  234911  234917  234919  234925  234929  234931  234937  234941  234947  234955  266669 

科目: 來源: 題型:解答題

10.解不等式:
(1)|1-$\frac{2x-1}{3}$|≤2
(2)(2-x)(x+3)<2-x.

查看答案和解析>>

科目: 來源: 題型:選擇題

9.在平面直角坐標(biāo)系中,圓M的方程(x-2)2+y2=1,若直線mx+y+2=0上至少存在一點P,使得以P為圓心,1為半徑的圓與圓M有公共點,則m的取值范圍是( 。
A.m≤0B.m≤-1C.m≥2D.m≤-$\frac{3}{2}$

查看答案和解析>>

科目: 來源: 題型:解答題

8.在如圖所示的幾何體中,四邊形ABCD是正方形,EA⊥底面ABCD,EF∥AD,且AB=6,AE=3$\sqrt{2}$,EF=3.
(Ⅰ)求證:DE⊥平面ABF;
(Ⅱ)求二面角A-FD-B與二面角A-BF-D的正切值之比.

查看答案和解析>>

科目: 來源: 題型:解答題

7.已知函數(shù)f(x)=$\frac{1-m+lnx}{x}$,m∈R.
(1)求f(x)的極值;
(2)當(dāng)m=0時,若不等式f(x)≥$\frac{k}{x+1}$對x∈[1,+∞)恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

6.已知函數(shù)f(x)=$\frac{1-m+lnx}{x}$,m∈R.
(1)當(dāng)m=0時,若函數(shù)在區(qū)間(a,a+$\frac{1}{2}$)上存在極值(其中a>0),求實數(shù)a的取值范圍;
(2)若不等式x(x+1)f(x)+m≥(k-m)x對x∈[1,+∞)恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

5.如圖,已知四棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD為直角梯形,∠D=90°,且AB∥CD,AB=AD,∠BCD=45°.
(1)點F在線段PC上何位置時,BF∥平面PAD?并證明你的結(jié)論.
(2)當(dāng)直線PB與平面ABCD所成的角為45°時,求二面角B-PC-D的大。

查看答案和解析>>

科目: 來源: 題型:解答題

4.如圖在直三棱柱ABC-A1B1C1中,∠ACB=90°,AA1=BC=2AC=2,D為AA1的中點.
(1)求證:CD⊥B1C1;
(2)求三棱錐C1-B1CD的體積.

查看答案和解析>>

科目: 來源: 題型:解答題

3.在極坐標(biāo)系中,已知曲線C1與C2的極坐標(biāo)方程分別為ρ=2sinθ與ρcosθ=-1(0≤θ<2π).求:
(1)兩曲線(含直線)的公共點P的極坐標(biāo);
(2)過點P被曲線C1截得弦長為$\sqrt{2}$的直線極坐標(biāo)方程.

查看答案和解析>>

科目: 來源: 題型:填空題

2.已知b>0,曲線$\left\{{\begin{array}{l}{x=cosϕ+a}\\{y=sinϕ+b}\end{array}}$(φ為參數(shù))與曲線ρ=4cosθ相交,則在平面直角坐標(biāo)系內(nèi),直線x+$\sqrt{3}$y=0被點(a,b)所在平面區(qū)域截得的弦長為4$\sqrt{2}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

1.已知f(x)=-x2+m|x|,且x>0時,(x-2)f′(x)<0,有以下4個條件,其中不能推出f(a)<f(b)的條件是(  )
A.a>b>2B.a>3,-3<b<-1
C.a<0<b,a+b>0D.a>2,-2<b<0,a-b>4

查看答案和解析>>

同步練習(xí)冊答案