相關習題
 0  237098  237106  237112  237116  237122  237124  237128  237134  237136  237142  237148  237152  237154  237158  237164  237166  237172  237176  237178  237182  237184  237188  237190  237192  237193  237194  237196  237197  237198  237200  237202  237206  237208  237212  237214  237218  237224  237226  237232  237236  237238  237242  237248  237254  237256  237262  237266  237268  237274  237278  237284  237292  266669 

科目: 來源: 題型:填空題

8.已知實數(shù)x,y滿足條件$\left\{\begin{array}{l}{x≥2}\\{x+y≤4}\\{-2x+y+m≥0}\end{array}\right.$若目標函數(shù)z=2x+y的最小值為3,則其最大值為7.

查看答案和解析>>

科目: 來源: 題型:選擇題

7.定義在R上的函數(shù)y=f(x),當x∈[0,2]時,f(x)=4(1-|x-1|),且對任意實數(shù)x∈[2n-2,2n+1-2](n∈N*,n≥2),都有f(x)=$\frac{1}{2}$f($\frac{x}{2}$-1).若g(x)=f(x)-logax有且僅有3個零點,則實數(shù)a的取值范圍是( 。
A.[2,10]B.[$\sqrt{2}$,$\sqrt{10}$]C.(2,10)D.[2,10)

查看答案和解析>>

科目: 來源: 題型:選擇題

6.已知△ABC的三個頂點的坐標為A(0,1),B(1,0),C(0,-2),O為坐標原點,動點M滿足|$\overrightarrow{CM}$|=1,則|$\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OM}$|的最大值是(  )
A.$\sqrt{2}+1$B.$\sqrt{7}+1$C.$\sqrt{2}$-1D.$\sqrt{7}$-1

查看答案和解析>>

科目: 來源: 題型:選擇題

5.如圖所示的程序框圖的算法思路來源于我國古代數(shù)學名著《九章算術》中的“更相減損術”,執(zhí)行該程序框圖,若輸入a,b的值分別是21,28,則輸出a的值為( 。
A.14B.7C.1D.0

查看答案和解析>>

科目: 來源: 題型:選擇題

4.已知等差數(shù)列{an}滿足a1=1,an+2-an=6,則a11等于( 。
A.31B.32C.61D.62

查看答案和解析>>

科目: 來源: 題型:選擇題

3.已知集合A={x|x2-2x-3>0},B={x|lg(x-2)≤1},則(∁RA)∪B=( 。
A.(-1,12)B.(2,3)C.(2,3]D.[-1,12]

查看答案和解析>>

科目: 來源: 題型:選擇題

2.甲、乙兩人約定晚6點到晚7點之間在某處見面,并約定甲若早到應等乙半小時,而乙還有其他安排,若乙早到則不需等待,則甲、乙兩人能見面的概率( 。
A.$\frac{3}{8}$B.$\frac{3}{4}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目: 來源: 題型:解答題

1.已知函數(shù)f(x)=xlnx+2,g(x)=x2-mx.
(Ⅰ)求函數(shù)f(x)在[t,t+2](t>0)上的最小值;
(Ⅱ)若方程f(x)+g(x)=0有兩個不同的實數(shù)根,求證:f(1)+g(1)<0;
(Ⅲ)若存在x0∈[$\frac{1}{e}$,e]使得mf′(x)+g(x)≥2x+m成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目: 來源: 題型:填空題

20.非零向量$\overrightarrow{m}$,$\overrightarrow{n}$的夾角為$\frac{π}{3}$,且滿足|$\overrightarrow{n}$|=λ|$\overrightarrow{m}$|(λ>0),向量組$\overrightarrow{{x}_{1}}$,$\overrightarrow{{x}_{2}}$,$\overrightarrow{{x}_{3}}$由一個$\overrightarrow{m}$和兩個$\overrightarrow{n}$排列而成,向量組$\overrightarrow{{y}_{1}}$,$\overrightarrow{{y}_{2}}$,$\overrightarrow{{y}_{3}}$由兩個$\overrightarrow{m}$和一個$\overrightarrow{n}$排列而成,若$\overrightarrow{{x}_{1}}$•$\overrightarrow{{y}_{1}}$+$\overrightarrow{{x}_{2}}$•$\overrightarrow{{y}_{2}}$+$\overrightarrow{{x}_{3}}$•$\overrightarrow{{y}_{3}}$所有可能值中的最小值為4$\overrightarrow{m}$2,則λ=$\frac{8}{3}$.

查看答案和解析>>

科目: 來源: 題型:解答題

19.已知等差數(shù)列{an}的前n項和為Sn,若Sm-1=-4,Sm=0,Sm+2=14(m≥2,且m∈N*).
(1)求m的值;
(2)若數(shù)列{bn}滿足$\frac{{a}_{n}}{2}$=logabn(n∈N*),求數(shù)列{(an+6)•bn}的前n項和.

查看答案和解析>>

同步練習冊答案