2.甲、乙兩人約定晚6點到晚7點之間在某處見面,并約定甲若早到應(yīng)等乙半小時,而乙還有其他安排,若乙早到則不需等待,則甲、乙兩人能見面的概率( 。
A.$\frac{3}{8}$B.$\frac{3}{4}$C.$\frac{3}{5}$D.$\frac{4}{5}$

分析 由題意知本題是一個幾何概型,試驗包含的所有事件是Ω={(x,y)|0≤x≤1,0≤y≤1},寫出滿足條件的事件是A={(x,y)|0≤x≤1,0≤y≤1,y-x<$\frac{1}{2}$或y<x},算出事件對應(yīng)的集合表示的面積,根據(jù)幾何概型概率公式得到結(jié)果

解答 解:由題意知本題是一個幾何概型,設(shè)甲到的時間為x,乙到的時間為y,
則試驗包含的所有事件是Ω={(x,y)|0≤x≤1,0≤y≤1},
事件對應(yīng)的集合表示的面積是s=1,
滿足條件的事件是A={(x,y)|0≤x≤1,0≤y≤1,y-x<$\frac{1}{2}$或y>x},
則B(0,$\frac{1}{2}$),D($\frac{1}{2}$,1),C(0,1),
則事件A對應(yīng)的集合表示的面積是1-$\frac{1}{2}$×$\frac{1}{2}$×$\frac{1}{2}$+$\frac{1}{2}$×1×1=$\frac{3}{8}$,根據(jù)幾何概型概率公式得到P=$\frac{\frac{3}{8}}{1}=\frac{3}{8}$
所以甲、乙兩人能見面的概率是1-$\frac{5}{8}=\frac{3}{8}$;
故選A.

點評 本題主要考查幾何概型的概率計算,對于這樣的問題,一般要通過把試驗發(fā)生包含的事件所對應(yīng)的區(qū)域求出,根據(jù)集合對應(yīng)的圖形面積,用面積的比值得到結(jié)果

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.直線l過拋物線C:y2=2px(p>0)的焦點F,與拋物線C交于A、B兩點,與其準線交于點D,若|AF|=6,$\overrightarrow{DB}=2\overrightarrow{BF}$,則p=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若x,y滿足約束條件$\left\{\begin{array}{l}{x+y≤0}\\{x-y≤0}\\{{x}^{2}+{y}^{2}≤4}\end{array}\right.$,則z=$\frac{y-2}{x+3}$的最小值為( 。
A.-2B.-$\frac{2}{3}$C.-$\frac{12}{5}$D.$\frac{\sqrt{2}-4}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.定義:若存在實數(shù)x1∈[-2,-1],x2∈[a,32]使2${\;}^{-{x}_{1}}$=log2x2成立,則稱a為指對實數(shù),那么在a∈[-20,20]上成為指對實數(shù)的概率是$\frac{9}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.在平面直角坐標系中,不等式組$\left\{\begin{array}{l}{x+y≤0}\\{x-y≤0}\\{{x}^{2}+{y}^{2}≤{r}^{2}}\end{array}\right.$(r為常數(shù))表示的平面區(qū)域的面積為π,若x,y滿足上述約束條件,則z=$\frac{x+y+1}{x+3}$的最小值為(  )
A.-1B.-$\frac{5\sqrt{2}+1}{7}$C.$\frac{1}{3}$D.-$\frac{7}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.定義在R上的函數(shù)y=f(x),當x∈[0,2]時,f(x)=4(1-|x-1|),且對任意實數(shù)x∈[2n-2,2n+1-2](n∈N*,n≥2),都有f(x)=$\frac{1}{2}$f($\frac{x}{2}$-1).若g(x)=f(x)-logax有且僅有3個零點,則實數(shù)a的取值范圍是(  )
A.[2,10]B.[$\sqrt{2}$,$\sqrt{10}$]C.(2,10)D.[2,10)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.設(shè)a是一個各位數(shù)字都不是0且沒有重復(fù)數(shù)字的三位數(shù),將組成a的3個數(shù)字按從小到大排成的三位數(shù)記為I(a),按從大到小排成的三位數(shù)記為D(a),(例如a=746,
則I(a)=467,D(a)=764)閱讀如右圖所示的程序框圖,運行相應(yīng)的程序,任意輸入一個a,輸出的結(jié)果b=495.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知向量$\overrightarrow{a}$=(sinx,mcosx),$\overrightarrow$=(3,-1).
(1)若$\overrightarrow{a}$∥$\overrightarrow$,且m=1,求2sin2x-3cos2x的值;
(2)若函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$的圖象關(guān)于直線x=$\frac{2π}{3}$對稱,求函數(shù)f(2x)在[$\frac{π}{8}$,$\frac{2π}{3}$]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=|x+1|+|2x-4|.
(Ⅰ)解關(guān)于x的不等式f(x)<9;
(Ⅱ)若直線y=m與函數(shù)y=f(x)的圖象圍成一個三角形,求實數(shù)m的取值范圍,并求圍成的三角形面積的最大值.

查看答案和解析>>

同步練習(xí)冊答案