相關(guān)習題
 0  239310  239318  239324  239328  239334  239336  239340  239346  239348  239354  239360  239364  239366  239370  239376  239378  239384  239388  239390  239394  239396  239400  239402  239404  239405  239406  239408  239409  239410  239412  239414  239418  239420  239424  239426  239430  239436  239438  239444  239448  239450  239454  239460  239466  239468  239474  239478  239480  239486  239490  239496  239504  266669 

科目: 來源: 題型:選擇題

10.已知$\overrightarrow a=(2,1),\overrightarrow b=(0,-1)$,則$2\overrightarrow b+3\overrightarrow a$=(  )
A.(-6,1)B.(6,-1)C.(6,1)D.(-6,-1)

查看答案和解析>>

科目: 來源: 題型:選擇題

9.y=$tan(4x+\frac{π}{3})$的最小正周期是( 。
A.$\frac{π}{4}$B.$\frac{π}{2}$C.πD.

查看答案和解析>>

科目: 來源: 題型:選擇題

8.$sin(-\frac{π}{6})$的值等于(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目: 來源: 題型:解答題

7.某網(wǎng)絡營銷部門為了統(tǒng)計某市網(wǎng)友2016年12月12日的網(wǎng)購情況,從該市當天參與網(wǎng)購的顧客中隨機抽查了男女各30人,統(tǒng)計其網(wǎng)購金額,得到如下頻率分布直方圖:
網(wǎng)購達人非網(wǎng)購達人合計
男性30
女性1230
合計60
若網(wǎng)購金額超過2千元的顧客稱為“網(wǎng)購達人”,網(wǎng)購金額不超過2千元的顧客稱為“非網(wǎng)購達人”.
(Ⅰ)若抽取的“網(wǎng)購達人”中女性占12人,請根據(jù)條件完成上面的2×2列聯(lián)表,并判斷是否有99%的把握認為“網(wǎng)購達人”與性別有關(guān)?
(Ⅱ)該營銷部門為了進一步了解這60名網(wǎng)友的購物體驗,從“非網(wǎng)購達人”、“網(wǎng)購達人”中用分層抽樣的方法確定12人,若需從這12人中隨機選取3人進行問卷調(diào)查.設(shè)ξ為選取的3人中“網(wǎng)購達人”的人數(shù),求ξ的分布列和數(shù)學期望.
(參考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目: 來源: 題型:解答題

6.在極坐標系中,點$A({\sqrt{3},\frac{π}{6}}),B({\sqrt{3},\frac{π}{2}})$,曲線 $C:ρ=2cos({θ-\frac{π}{3}})\;(ρ≥0)$.以極點為坐標原點,極軸為x軸正半軸建立平面直角坐標系.
(Ⅰ)在直角坐標系中,求點A,B的直角坐標及曲線C的參數(shù)方程;
(Ⅱ)設(shè)點M為曲線C上的動點,求|MA|2+|MB|2取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

5.某市春節(jié)期間7家超市廣告費支出xi(萬元)和銷售額yi(萬元)數(shù)據(jù)如表:
超市ABCDEFG
廣告費支出xi1246111319
銷售額yi19324044525354
(Ⅰ)若用線性回歸模型擬合y與x的關(guān)系,求y與x的線性回歸方程.
(Ⅱ)若用二次函數(shù)回歸模型擬合y與x的關(guān)系,可得回歸方程:$\hat y=-0.17{x^2}$+5x+20,經(jīng)計算二次函數(shù)回歸模型和線性回歸模型的R2分別約為0.93和0.75,請用R2說明選擇哪個回歸模型更合適,并用此模型預測A超市廣告費支出3萬元時的銷售額.
參考數(shù)據(jù):$\overline x=8,\overline y=42,\sum_{i=1}^7{x_i}{y_i}=2794,\sum_{i=1}^7{{x_i}^2}$=708.
參考公式:$\hat b=\frac{{\sum_{i=1}^n{x_i}{y_i}-n\overline x\overline y}}{{\sum_{i=1}^n{{x_i}^2-n{{\overline x}^2}}}}$$,\hat a=\overline y-\hat b\overline x$.

查看答案和解析>>

科目: 來源: 題型:解答題

4.某商場對A商品近30天的日銷售量y(件)與時間t(天)的銷售情況進行整理,得到如下數(shù)據(jù)統(tǒng)計分析,日銷售量y(件)與時間t(天)之間具有線性相關(guān)關(guān)系
時間(t)246810
日銷售量(y)3837323330
(1)請根據(jù)表提供的數(shù)據(jù),用最小二乘法原理求出y關(guān)于t的線性回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$t+a
(2)已知A商品近30天內(nèi)的銷售價格Z(元)與時間t(天)的關(guān)系為:z=$\left\{\begin{array}{l}{-t+100,(20≤t≤30,t∈N)}\\{t+20,(0<t<20,t∈Z)}\end{array}\right.$
根據(jù)(1)中求出的線性回歸方程,預測t為何值時,A商品的日銷售額最大(參考公式$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}{t}_{i}{y}_{i}-n\overline{t}\overline{y}}{\sum_{i=1}^{n}{{t}_{i}}^{2}-n{\overline{t}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}\overline{t}$)

查看答案和解析>>

科目: 來源: 題型:填空題

3.定義在R上的偶函數(shù)f(x)的導函數(shù)為f′(x),若對任意的示數(shù)x,都有2f(x)+xf′(x)<2恒成立,則使x2f(x)-f(1)<x2-1成立的x的取值范圍為x<-1或x>1.

查看答案和解析>>

科目: 來源: 題型:選擇題

2.《數(shù)書九章》中對已知三角形三邊長求三角形的面積的求法填補了我國傳統(tǒng)數(shù)學的一個空白,與著名的海倫公式完全等價,由此可以看出我國古代具有很高的數(shù)學水平,其求法是“以小斜冪,并大斜冪,減中斜冪,余半之,自乘于上.以小斜冪乘大斜冪,減上,余四約之,為實,一為從偶,開平方得積”,若把這段文字寫成公式,即S=$\sqrt{\frac{1}{4}[{c}^{2}{a}^{2}-(\frac{{c}^{2}+{a}^{2}-^{2}}{2})^{2}]}$,現(xiàn)有周長為10的△ABC滿足sinA:sinB:sin:C=5:7:8,試用以上給出的公式求得△ABC的面積為(  )
A.$\frac{5}{8}$B.$\frac{5\sqrt{3}}{2}$C.10$\sqrt{3}$D.$\frac{35}{8}$

查看答案和解析>>

科目: 來源: 題型:解答題

1.已知曲線C1的參數(shù)方程為$\left\{\begin{array}{l}x=1+\frac{1}{2}t\\ y=\frac{{\sqrt{3}}}{2}t\end{array}\right.$(為參數(shù)).在以坐標原點為極點,軸的正半軸為極軸的極坐標系中,曲線C2:${ρ^2}=\frac{12}{{3+{{sin}^2}θ}}$.
(Ⅰ)求曲線C1的普通方程和C2的直角坐標方程;
(Ⅱ)若C1與C2相交于A、B兩點,設(shè)點F(1,0),求$\frac{1}{|FA|}+\frac{1}{|FB|}$的值.

查看答案和解析>>

同步練習冊答案