相關(guān)習(xí)題
 0  240905  240913  240919  240923  240929  240931  240935  240941  240943  240949  240955  240959  240961  240965  240971  240973  240979  240983  240985  240989  240991  240995  240997  240999  241000  241001  241003  241004  241005  241007  241009  241013  241015  241019  241021  241025  241031  241033  241039  241043  241045  241049  241055  241061  241063  241069  241073  241075  241081  241085  241091  241099  266669 

科目: 來(lái)源: 題型:選擇題

9.關(guān)于二項(xiàng)式(x-1)2005,有下列命題:
①該二項(xiàng)展開(kāi)式中非常數(shù)項(xiàng)的系數(shù)之和是1;
②該二項(xiàng)展開(kāi)式中第六項(xiàng)為$C_{2005}^6{x^{1999}}$;
③該二項(xiàng)展開(kāi)式中系數(shù)最大的項(xiàng)為第1002項(xiàng);
④當(dāng)x=2006時(shí),(x-1)2005除以2006的余數(shù)是2005.
其中所有正確命題的序號(hào)是( 。
A.②④B.②③C.①③D.①④

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

8.已知tan($\frac{π}{4}$+θ)=3,求:
(1)tanθ的值;
(2)sin2θ-2cos2θ的值.

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

7.△ABC中,已知cosA=$\frac{5}{13}$,sinB=$\frac{3}{5}$,則cosC的值為(  )
A.-$\frac{16}{65}$B.$\frac{56}{65}$C.$\frac{16}{65}$或$\frac{56}{65}$D.$\frac{16}{65}$

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

6.將-$\frac{\sqrt{3}}{2}$cosα-$\frac{1}{2}$sinα化成Asin(α+β)(A>0,0<β<2π)的形式,以下式子正確的是(  )
A.sin(α+$\frac{4π}{3}$)B.sin(α+$\frac{7π}{6}$)C.-sin(α+$\frac{π}{3}$)D.sin(α-$\frac{2π}{3}$)

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

5.若函數(shù)f(x)=log0.2(kx2-kx+1)的定義域?yàn)镽,則實(shí)數(shù)k的取值范圍是[0,4).

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

4.cos2θ+cos2(θ+120°)+cos2(θ+240°)的值是$\frac{3}{2}$.

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

3.若cosx-cosy=$\frac{1}{2}$,sinx-siny=$\frac{1}{3}$,則cos(x-y)=$\frac{59}{72}$.

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

2.已知lg2=t,用含t的代數(shù)式表示lg25=2-2t.

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

1.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{lo{g}_{2}(2-x),x<1}\\{{2}^{x},x≥1}\end{array}\right.$,則f(-2)+f(log26)=(  )
A.2B.6C.8D.14

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

20.某省高考改革實(shí)施方案指出:該省高考考生總成績(jī)將由語(yǔ)文、數(shù)學(xué)、外語(yǔ)3門(mén)統(tǒng)一高考成績(jī)和學(xué)生自主選擇的學(xué)業(yè)水平等級(jí)性考試科目共同構(gòu)成.該省教育廳為了解正就讀高中的學(xué)生家長(zhǎng)對(duì)高考改革方案所持的贊成態(tài)度,隨機(jī)從中抽取了100名城鄉(xiāng)家長(zhǎng)作為樣本進(jìn)行調(diào)查,調(diào)查結(jié)果顯示樣本中有25人持不贊成意見(jiàn).下面是根據(jù)樣本的調(diào)查結(jié)果繪制的等高條形圖.
(1)根據(jù)已知條件與等高條形圖完成下面的2×2列聯(lián)表,并判斷我們能否有95%的把握認(rèn)為“贊成高考改革方案與城鄉(xiāng)戶口有關(guān)”?
贊成不贊成合計(jì)
城鎮(zhèn)居民
農(nóng)村居民
合計(jì)
注:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)},其中n=a+b+c+d$
P(K2≥k00.100.050.005
k02.7063.8417.879
(2)用樣本的頻率估計(jì)概率,若隨機(jī)在全省不贊成高考改革的家長(zhǎng)中抽取3個(gè),記這3個(gè)家長(zhǎng)中是城鎮(zhèn)戶口的人數(shù)為x,試求x的分布列及數(shù)學(xué)期望E(x).

查看答案和解析>>

同步練習(xí)冊(cè)答案