相關習題
 0  241218  241226  241232  241236  241242  241244  241248  241254  241256  241262  241268  241272  241274  241278  241284  241286  241292  241296  241298  241302  241304  241308  241310  241312  241313  241314  241316  241317  241318  241320  241322  241326  241328  241332  241334  241338  241344  241346  241352  241356  241358  241362  241368  241374  241376  241382  241386  241388  241394  241398  241404  241412  266669 

科目: 來源: 題型:選擇題

10.下列命題中,真命題的個數(shù)是( 。
①函數(shù)y=sinx,其導函數(shù)是偶函數(shù);
②“若x=y,則x2=y2”的逆否命題;
③“x≥2”是“x2-x-2≥0”成立的必要不充分條件;
④命題p:“p:?x0∈R,x02-x0+1<0,則命題p的否定是:“?x∈R,x2-x+1≥0”
A.1B.2C.3D.4

查看答案和解析>>

科目: 來源: 題型:解答題

9.已知函數(shù)f(x)=x3+ax2+bx+c在x=-$\frac{2}{3}$,x=1處都取得極值
(1)求a,b的值與函數(shù)f(x)的單調遞減區(qū)間;
(2)若對x∈[-1,2],不等式f(x)<c2恒成立,求c的取值范圍.

查看答案和解析>>

科目: 來源: 題型:選擇題

8.命題p:?x0>0,x02-2x0-3=0,則命題¬p是( 。
A.?x0≤0,x02-2x0-3=0B.?x0>0,x02-2x0-3=0
C.?x0≤0,x02-2x0-3≠0D.?x0>0,x02-2x0-3≠0

查看答案和解析>>

科目: 來源: 題型:解答題

7.已知函數(shù)f(x)=ax-1-lnx(a∈R)
(1)討論函數(shù)f(x)極值點的個數(shù),并說明理由
(2)若?x>1,xf(x)<ax2-ax+a恒成立,求a的最大整數(shù)值.

查看答案和解析>>

科目: 來源: 題型:選擇題

6.從某高中隨機選取5名高一男生,其身高和體重的數(shù)據(jù)如表所示:
身高x(cm)160165170175180
身高y(kg)6366707274
根據(jù)上表可得回歸直線方程$\widehat{y}$=0.56x+$\widehat{a}$據(jù)此模型預報身高為172cm的高一男生的體重為( 。
A.70.09B.70.12C.70.55D.71.05

查看答案和解析>>

科目: 來源: 題型:填空題

5.已知a,b∈R,i是虛數(shù)單位,若a+i=2-bi,則|a+bi|=$\sqrt{5}$.

查看答案和解析>>

科目: 來源: 題型:填空題

4.若f′(x)為定義在R上的函數(shù)f(x)的導函數(shù),且y=3f′(x)的圖象如圖所示,則y=f(x)的單調遞增開區(qū)間是(-∞,3).

查看答案和解析>>

科目: 來源: 題型:解答題

3.(1)證明不等式ex≥x+1
(2)若存在x∈(0,+∞),使不等式$\frac{2x-m}{{e}^{x}-x}$>x成立,求m的取值范圍
(3)設P,Q分別是函數(shù)y=lnx與y=ex圖象上的動點,試證明|PQ|$≥\sqrt{2}$.

查看答案和解析>>

科目: 來源: 題型:解答題

2.如圖所示,以向量$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow$為邊作?AOBD,又$\overrightarrow{BM}$=$\frac{1}{3}$$\overrightarrow{BC}$,$\overrightarrow{CN}$=$\frac{1}{3}$$\overrightarrow{CD}$,用$\overrightarrow{a}$,$\overrightarrow$表示$\overrightarrow{OM}$、$\overrightarrow{ON}$、$\overrightarrow{MN}$.

查看答案和解析>>

科目: 來源: 題型:解答題

1.化簡:$\frac{sin(4π-α)cos(\frac{9π}{2}+α)}{sin(\frac{11π}{2}+α)cos(2π-α)}$-$\frac{tan(5π-α)}{sin(3π-α)sin(\frac{π}{2}+α)}$.

查看答案和解析>>

同步練習冊答案