科目: 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)討論函數(shù)的單調(diào)性;
(Ⅱ)證明: 時, ;
(Ⅲ)比較三個數(shù): , , 的大。為自然對數(shù)的底數(shù)),請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】我市兩所高中分別組織部分學(xué)生參加了“七五普法網(wǎng)絡(luò)知識大賽”,現(xiàn)從這兩所學(xué)校的參賽學(xué)生中分別隨機抽取30名學(xué)生的成績(百分制)作為樣本,得到樣本數(shù)據(jù)的莖葉圖如圖所示.
(Ⅰ)若乙校每位學(xué)生被抽取的概率為0.15,求乙校參賽學(xué)生總?cè)藬?shù);
(Ⅱ)根據(jù)莖葉圖,從平均水平與波動情況兩個方面分析甲、乙兩校參賽學(xué)生成績(不要求計算);
(Ⅲ)從樣本成績低于60分的學(xué)生中隨機抽取3人,求3人不在同一學(xué)校的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知二次函數(shù)f(x)=x2+2bx+c(b,c∈R).
(1)若函數(shù)y=f(x)的零點為﹣1和1,求實數(shù)b,c的值;
(2)若f(x)滿足f(1)=0,且關(guān)于x的方程f(x)+x+b=0的兩個實數(shù)根分別在區(qū)間(﹣3,﹣2),(0,1)內(nèi),求實數(shù)b的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】“活水圍網(wǎng)”養(yǎng)魚技術(shù)具有養(yǎng)殖密度高、經(jīng)濟效益好的特點.研究表明:“活水圍網(wǎng)”養(yǎng)魚時,某種魚在一定的條件下,每尾魚的平均生長速度v(單位:千克/年)是養(yǎng)殖密度x (單位:尾/立方米)的函數(shù).當(dāng)x不超過4尾/立方米時,v的值為2千克/年;當(dāng)4<x≤20時,v是x的一次函數(shù),當(dāng)x達到20尾/立方米時,因缺氧等原因,v的值為0千克/年.
(1)當(dāng)0<x≤20時,求v關(guān)于x的函數(shù)表達式;
(2)當(dāng)養(yǎng)殖密度x為多大時,魚的年生長量(單位:千克/立方米)可以達到最大?并求出最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知在四棱錐中,底面是矩形,且,,平面,、分別是線段、的中點.
(1)證明:
(2)在線段上是否存在點,使得∥平面,若存在,確定點的位置;若不存在,說明理由.
(3)若與平面所成的角為,求二面角的余弦值
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓: 的離心率為,順次連接橢圓的四個頂點得到的四邊形的面積為16.
(Ⅰ)求橢圓的方程;
(Ⅱ)過橢圓的頂點的直線交橢圓于另一點,交軸于點,若、、成等比數(shù)列,求直線的斜率.
查看答案和解析>>
科目: 來源: 題型:
【題目】(本題滿分15分)如圖,在四棱錐中,平面PAD⊥平面ABCD, ,,E是BD的中點.
(Ⅰ)求證:EC//平面APD;
(Ⅱ)求BP與平面ABCD所成角的正切值;
(Ⅲ)求二面角的正弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知全集U=R,集合A={x|4≤2x<128},B={x|1<x≤6},M={x|a﹣3<x<a+3}.
(1)求A∩UB;
(2)若M∪UB=R,求實數(shù)a的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】下列幾個命題
①奇函數(shù)的圖象一定通過原點
②函數(shù)y= 是偶函數(shù),但不是奇函數(shù)
③函數(shù)f(x)=ax﹣1+3的圖象一定過定點P,則P點的坐標是(1,4)
④若f(x+1)為偶函數(shù),則有f(x+1)=f(﹣x﹣1)
⑤若函數(shù)f(x)= 在R上的增函數(shù),則實數(shù)a的取值范圍為[4,8)
其中正確的命題序號為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com