科目: 來源: 題型:
【題目】 某中學(xué)的環(huán)保社團參照國家環(huán)境標(biāo)準(zhǔn)制定了該校所在區(qū)域空氣質(zhì)量指數(shù)與空氣質(zhì)量等級對應(yīng)關(guān)系如下表(假設(shè)該區(qū)域空氣質(zhì)量指數(shù)不會超過300):
空氣質(zhì)量指數(shù) | ||||||
空氣質(zhì)量等級 | 級優(yōu) | 級良 | 級輕度 污染 | 級中度 污染 | 級重度 污染 | 級嚴(yán)重污染 |
該社團將該校區(qū)在2016年100天的空氣質(zhì)量指數(shù)監(jiān)測數(shù)據(jù)作為樣本,繪制的頻率分布直方圖如下圖,把該直方圖所得頻率估計為概率.
(Ⅰ)請估算2017年(以365天計算)全年空氣質(zhì)量優(yōu)良的天數(shù)(未滿一天按一天計算);
(Ⅱ)用分層抽樣的方法共抽取10天,則空氣質(zhì)量指數(shù)在(0,50],(50,100],(100,150]的天數(shù)中各應(yīng)抽取幾天?
(Ⅲ)已知空氣質(zhì)量等級為1級時不需要凈化空氣,空氣質(zhì)量等級為2級時每天需凈化空氣的費用為2000元,空氣質(zhì)量等級為3級時每天需凈化空氣的費用為4000元.若在(Ⅱ)的條件下,從空氣質(zhì)量指數(shù)在的天數(shù)中任意抽取兩天,求這兩天的凈化空氣總費用為4000元的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)f(x)是定義在[﹣1,1]上的奇函數(shù),且f(1)=1,若x,y∈[﹣1,1],x+y≠0有(x+y)[f(x)+f(y)]>0.
(1)判斷f(x)的單調(diào)性,并加以證明;
(2)解不等式 ;
(3)若f(x)≤m2﹣2am+1對所有x∈[﹣1,1],a∈[﹣1,1]恒成立.求實數(shù)m的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖所示,已知點A(1,0),D(﹣1,0),點B,C在單位圓O上,且∠BOC= .
(1)若點B( , ),求cos∠AOC的值;
(2)設(shè)∠AOB=x(0<x< ),四邊形ABCD的周長為y,將y表示成x的函數(shù),并求出y的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】
已知橢圓的離心率為,且點在橢圓上.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)若斜率為k的直線交橢圓于A,B兩點,求△OAB面積的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】為調(diào)查某社區(qū)居民的業(yè)余生活狀況,研究這一社區(qū)居民在20:00﹣22:00時間段的休閑方式與性別的關(guān)系,隨機調(diào)查了該社區(qū)80人,得到下面的數(shù)據(jù)表:
休閑方式 | 看電視 | 看書 | 合計 |
男 | 10 | 50 | 60 |
女 | 10 | 10 | 20 |
合計 | 20 | 60 | 80 |
(1)根據(jù)以上數(shù)據(jù),能否有99%的把握認(rèn)為“在20:00﹣22:00時間段居民的休閑方式與性別有關(guān)系”?
(2)將此樣本的頻率估計為總體的概率,隨機調(diào)查3名在該社區(qū)的男性,設(shè)調(diào)查的3人在這一時間段以看書為休閑方式的人數(shù)為隨機變量X.求X的數(shù)學(xué)期望和方差.
P(X2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
附:X2= .
查看答案和解析>>
科目: 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,圓的參數(shù)方程為(為參數(shù)),以O為極點, 軸的非負(fù)半軸為極軸建立極坐標(biāo)系.
(Ⅰ)求圓的普通方程;
(Ⅱ)直線的極坐標(biāo)方程是,射線與圓C的交點為,與直線的交點為,求線段的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】設(shè)函數(shù)f(x)=
(1)當(dāng) 時,求函數(shù)f(x)的值域;
(2)若函數(shù)f(x)是(﹣∞,+∞)上的減函數(shù),求實數(shù)a的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)f(x)=mx2﹣mx﹣1.
(1)若對于x∈R,f(x)<0恒成立,求實數(shù)m的取值范圍;
(2)若對于x∈[1,3],f(x)<5﹣m恒成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)f(x)= cosx(sinx+cosx).
(1)若0<α< ,且sinα= ,求f(α)的值;
(2)求函數(shù)f(x)的最小正周期及單調(diào)遞增區(qū)間.
查看答案和解析>>
科目: 來源: 題型:
【題目】在四棱錐中,底面為平行四邊形, , , , 點在底面內(nèi)的射影在線段上,且, , 為的中點, 在線段上,且.
(Ⅰ)當(dāng)時,證明:平面平面;
(Ⅱ)當(dāng)平面與平面所成的二面角的正弦值為時,求四棱錐的體積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com