科目: 來源: 題型:
【題目】有人發(fā)現(xiàn),多看電視容易使人變冷漠,如表是一個(gè)調(diào)查機(jī)構(gòu)對(duì)此現(xiàn)象的調(diào)查結(jié)果:
冷漠 | 不冷漠 | 總計(jì) | |
多看電視 | 68 | 42 | 110 |
少看電視 | 20 | 38 | 58 |
總計(jì) | 88 | 80 | 168 |
P(K2≥k) | 0.025 | 0.010 | 0.005 | 0.001 |
k | 5.024 | 6.635 | 7.879 | 10.828 |
K2= ≈11.377,下列說法正確的是( )
A.大約有99.9%的把握認(rèn)為“多看電視與人變冷漠”有關(guān)系
B.大約有99.9%的把握認(rèn)為“多看電視與人變冷漠”沒有關(guān)系
C.某人愛看電視,則他變冷漠的可能性為99.9%
D.愛看電視的人中大約有99.9%會(huì)變冷漠
查看答案和解析>>
科目: 來源: 題型:
【題目】設(shè)函數(shù)f(x)=x2+2ax﹣a﹣1,x∈[0,2],a為常數(shù).
(1)求f(x)的最小值g(a)的解析式;
(2)在(1)中,是否存在最小的整數(shù)m,使得g(a)﹣m≤0對(duì)于任意a∈R均成立,若存在,求出m的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】共享單車是指企業(yè)在校園、地鐵站點(diǎn)、公交站點(diǎn)、居民區(qū)、商業(yè)區(qū)、公共服務(wù)區(qū)等提供自行車單車共享服務(wù),是共享經(jīng)濟(jì)的一種新形態(tài).一個(gè)共享單車企業(yè)在某個(gè)城市就“一天中一輛單車的平均成本(單位:元)與租用單車的數(shù)量(單位:千輛)之間的關(guān)系”進(jìn)行調(diào)查研究,在調(diào)查過程中進(jìn)行了統(tǒng)計(jì),得出相關(guān)數(shù)據(jù)見下表:
租用單車數(shù)量(千輛) | 2 | 3 | 4 | 5 | 8 |
每天一輛車平均成本(元) | 3.2 | 2.4 | 2 | 1.9 | 1.7 |
根據(jù)以上數(shù)據(jù),研究人員分別借助甲、乙兩種不同的回歸模型,得到兩個(gè)回歸方程,方程甲: ,方程乙: .
(1)為了評(píng)價(jià)兩種模型的擬合效果,完成以下任務(wù):
①完成下表(計(jì)算結(jié)果精確到0.1)(備注: ,稱為相應(yīng)于點(diǎn)的殘差(也叫隨機(jī)誤差));
租用單車數(shù)量 (千輛) | 2 | 3 | 4 | 5 | 8 | |
每天一輛車平均成本 (元) | 3.2 | 2.4 | 2 | 1.9 | 1.7 | |
模型甲 | 估計(jì)值 | 2.4 | 2.1 | 1.6 | ||
殘差 | 0 | -0.1 | 0.1 | |||
模型乙 | 估計(jì)值 | 2.3 | 2 | 1.9 | ||
殘差 | 0.1 | 0 | 0 |
②分別計(jì)算模型甲與模型乙的殘差平方和及,并通過比較的大小,判斷哪個(gè)模型擬合效果更好.
(2)這個(gè)公司在該城市投放共享單車后,受到廣大市民的熱烈歡迎,共享單車常常供不應(yīng)求,于是該公司研究是否增加投放.根據(jù)市場調(diào)查,這個(gè)城市投放8千輛時(shí),該公司平均一輛單車一天能收入10元,6元收入的概率分別為0.6,0.4;投放1萬輛時(shí),該公司平均一輛單車一天能收入10元,6元收入的概率分別為0.4,0.6.問該公司應(yīng)該投放8千輛還是1萬輛能獲得更多利潤?(按(1)中擬合效果較好的模型計(jì)算一天中一輛單車的平均成本,利潤=收入-成本).
查看答案和解析>>
科目: 來源: 題型:
【題目】定義在R上的函數(shù)f(x),f(0)≠0,f(1)=2,當(dāng)x>0,f(x)>1,且對(duì)任意a,b∈R,有f(a+b)=f(a)f(b).
(1)求f(0)的值.
(2)求證:對(duì)任意x∈R,都有f(x)>0.
(3)若f(x)在R上為增函數(shù),解不等式f(3﹣2x)>4.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)f(x)=ex﹣1﹣x.
(1)若存在x∈[﹣1,ln ],滿足a﹣ex+1+x<0成立,求實(shí)數(shù)a的取值范圍.
(2)當(dāng)x≥0時(shí),f(x)≥(t﹣1)x恒成立,求實(shí)數(shù)t的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】若橢圓C1: 的離心率等于 ,拋物線C2:x2=2py(p>0)的焦點(diǎn)在橢圓C1的頂點(diǎn)上.
(1)求拋物線C2的方程;
(2)求過點(diǎn)M(﹣1,0)的直線l與拋物線C2交E、F兩點(diǎn),又過E、F作拋物線C2的切線l1、l2 , 當(dāng)l1⊥l2時(shí),求直線l的方程.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,設(shè)橢圓: 的離心率為, 分別為橢圓的左、右頂點(diǎn), 為右焦點(diǎn),直線與的交點(diǎn)到軸的距離為,過點(diǎn)作軸的垂線, 為上異于點(diǎn)的一點(diǎn),以為直徑作圓.
(1)求的方程;
(2)若直線與的另一個(gè)交點(diǎn)為,證明:直線與圓相切.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知集合A={x| ≤( )x﹣1≤9},集合B={x|log2x<3},集合C={x|x2﹣(2a+1)x+a2+a≤0},U=R
(1)求集合A∩B,(UB)∪A;
(2)若A∪C=A,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com