科目: 來源: 題型:
【題目】我國是世界上嚴重缺水的國家,某市政府為了鼓勵居民節(jié)約用水,計劃調整居民生活用水收費方案,擬確定一個合理的月用水量標準(噸)、一位居民的月用水量不超過的部分按平價收費,超出的部分按議價收費.為了了解居民用水情況,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數據按照[0,0.5),[0.5,1),…,[4,4.5)分成9組,制成了如圖所示的頻率分布直方圖.
(1)設該市有30萬居民,估計全市居民中月均用水量不低于3噸的人數,并說明理由;
(2)若該市政府希望使85%的居民每月的用水量不超過標準(噸),估計的值,并說明理由.
(3)利用分層抽樣的方法在[0,0.5) [3.5,4) [4,4.5)三組中選取5位居民,再從這5位居民中任意取三人,求這三人恰有兩人來自同一組的概率。
查看答案和解析>>
科目: 來源: 題型:
【題目】(本題滿分10分)已知等差數列{an}滿足a1+a2=10,a4-a3=2.
(1)求{an}的通項公式.
(2)設等比數列{bn}滿足b2=a3,b3=a7.問:b6與數列{an}的第幾項相等?
查看答案和解析>>
科目: 來源: 題型:
【題目】已知由實數組成的等比數列{an}的前項和為Sn , 且滿足8a4=a7 , S7=254.
(1)求數列{an}的通項公式;
(2)對n∈N* , bn= ,求數列{bn}的前n項和Tn .
查看答案和解析>>
科目: 來源: 題型:
【題目】利用隨機模擬的方法可以估計圖中由曲線與兩直線x=2及y=0所圍成的陰影部分的面積S:①先產生兩組0~1的均勻隨機數,a=RAND(。,b=RAND(。;② 做變換,令x=2a,y=2b;③產生N個點(x,y),并統(tǒng)計落在陰影內的點(x,y)的個數,已知某同學用計算機做模擬試驗結果,選取了以下20組數據(如圖所示),則據此可估計S的值為____.
x | y | y-0.5*x*x |
0.441414481 | 1.849136261 | 1.751712889 |
1.836710045 | 0.508951247 | -1.177800647 |
1.389538592 | 0.999398689 | 0.033989941 |
0.745446842 | 1.542498362 | 1.264652865 |
0.981548556 | 1.928476536 | 1.446757752 |
1.87036015 | 1.287100762 | -0.462022784 |
1.20252176 | 1.271691664 | 0.548662372 |
1.931929493 | 0.920911487 | -0.945264297 |
0.450507939 | 1.561663263 | 1.460184562 |
1.356178263 | 1.856227093 | 0.936617353 |
0.408489063 | 1.564834147 | 1.481402489 |
0.163980707 | 0.135034106 | 0.121589269 |
1.868152447 | 0.350326824 | -1.394669959 |
0.252753469 | 1.287326597 | 1.255384439 |
1.253648606 | 1.872701968 | 1.086884555 |
0.679831952 | 0.140283887 | -0.090801854 |
1.544339084 | 0.804655288 | -0.387836316 |
1.563089931 | 0.872844524 | -0.348780542 |
1.17458008 | 0.867440167 | 0.177620985 |
1.057219794 | 1.791271879 | 1.232415032 |
查看答案和解析>>
科目: 來源: 題型:
【題目】已知拋物線 ,直線 與 交于 , 兩點,且 ,其中 為坐標原點.
(1)求拋物線 的方程;
(2)已知點 的坐標為(-3,0),記直線 、 的斜率分別為 , ,證明: 為定值.
查看答案和解析>>
科目: 來源: 題型:
【題目】某興趣小組欲研究晝夜溫差大小與患感冒人數多少之間的關系,他們分別到氣象局與某醫(yī)院抄錄了1至6月每月10號的晝夜溫差情況與因患感冒而就診的人數,得到如下的資料:
該興趣小組確定的研究方案是:現從這六組數據中選取2組,用剩下的4組數據求線性回歸方程,再用被選用的2組數據進行檢驗.
參考公式:
(1)求選取的2組數據恰好是相鄰兩個月的概率;
(2)若選取的是1月與6月的兩組數據,請根據2至5月的數據,求出 關于 的線性回歸方程 ;
(3)若有線性回歸方程得到的估計數據與所選出的檢驗數據的誤差均不超過2人,則認為得到的線性回歸方程是理想的,試問(2)中所得線性回歸方程是否是理想?
查看答案和解析>>
科目: 來源: 題型:
【題目】袋中有a個黑球和b個白球,隨機地每次從中取出一球,每次取后不放回,記事件A為“直到第k次才取到黑球”,其中1≤k≤b;事件B為“第7次取出的球恰好是黑球”,其中1≤k≤b。
(Ⅰ)若a=5,b=3,k=2,求事件A發(fā)生的概率;
(Ⅱ)判斷事件B發(fā)生的概率是否隨k取值的變化而變化?并說明理由;
(Ⅲ)比較a=5,b=9時事件A發(fā)生的概率與a=5,b=10時事件A發(fā)生的概率的大小,并說明理由。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com