科目: 來源: 題型:
【題目】(本小題滿分12分)
有兩枚大小相同、質(zhì)地均勻的正四面體玩具,每個(gè)玩具的各個(gè)面上分別寫著數(shù)字1,2,3,5.同時(shí)投擲這兩枚玩具一次,記為兩個(gè)朝下的面上的數(shù)字之和.
(Ⅰ)求事件“m不小于6”的概率;
(Ⅱ)“m為奇數(shù)”的概率和“m為偶數(shù)”的概率是不是相等?證明你作出的結(jié)論.
查看答案和解析>>
科目: 來源: 題型:
【題目】在△ABC中,設(shè)內(nèi)角A、B、C的對邊分別為a、b、c,向量 =(cosA+ ,sinA),向量 =(﹣sinA,cosA),若| + |=2.
(1)求角A的大;
(2)若b=4 ,且c= a,求△ABC的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】類似于十進(jìn)制中的逢10進(jìn)1,十二進(jìn)制的進(jìn)位原則是逢12進(jìn)1,采用數(shù)字0,1,2,…,9和字母M,N作為計(jì)數(shù)符號,這些符號與十進(jìn)制的數(shù)字對應(yīng)關(guān)系如下表:
十二進(jìn)制 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | M | N |
十進(jìn)制 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
例如,因?yàn)?63=3×122+10×12+11,所以十進(jìn)制中的563在十二進(jìn)制中被表示為3MN(12).那么十進(jìn)制中的2008在十二進(jìn)制中被表示為( )
A. 11N4(12) B. 1N25(12) C. 12N4(12) D. 1N24(12)
查看答案和解析>>
科目: 來源: 題型:
【題目】已知數(shù)列{an}滿足a1=5,a2=13,an+2=5an+1﹣6an , 則使該數(shù)列的n項(xiàng)和Sn不小于2016的最小自然數(shù)n等于 .
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標(biāo)系中,定義兩點(diǎn)A(xA , yA),B(xB , yB)間的“L﹣距離”為d(A﹣B)=|xA﹣xB|+|yA﹣yB|.現(xiàn)將邊長為1的正三角形按如圖所示方式放置,其中頂點(diǎn)A與坐標(biāo)原點(diǎn)重合,記邊AB所在的直線斜率為k(0≤k≤ ),則d(B﹣C)取得最大值時(shí),邊AB所在直線的斜率為 .
查看答案和解析>>
科目: 來源: 題型:
【題目】設(shè)定義在R上的偶函數(shù)y=f(x),滿足對任意t∈R都有f(t)=f(2﹣t),且x∈(0,1]時(shí),f(x)= ,a=f( ),b=f( ),c=f( ),則( )
A.b<c<a
B.a<b<c
C.c<a<b
D.b<a<c
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在四棱錐PABCD中,AD⊥平面PDC,AD∥BC,PD⊥PB,AD=1,BC=3,CD=4,PD=2.
(1)求異面直線AP與BC所成角的余弦值;
(2)求證:PD⊥平面PBC;
(3)求直線AB與平面PBC所成角的正弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知圓C:x2+y2+2x-4y+3=0.
(1)若直線l過點(diǎn)(-2,0)且被圓C截得的弦長為2,求直線l的方程;
(2)從圓C外一點(diǎn)P向圓C引一條切線,切點(diǎn)為M,O為坐標(biāo)原點(diǎn),且|PM|=|PO|,求|PM|的最小值.
查看答案和解析>>
科目: 來源: 題型:
【題目】若將函數(shù)f(x)=cosx(sinx+cosx)﹣ 的圖象向右平移φ個(gè)單位,所得函數(shù)是奇函數(shù),則φ的最小正值是( )
A.
B.
C.
D.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知圓O:x2+y2=1和定點(diǎn)A(2,1),由圓O外一點(diǎn)P(a,b)向圓O引切線PQ,切點(diǎn)為Q,且有|PQ|=|PA|.
(1)求a,b間的關(guān)系;
(2)求|PQ|的最小值;
(3)以P為圓心作圓,使它與圓O有公共點(diǎn),試在其中求出半徑最小的圓的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com