科目: 來源: 題型:
【題目】(本小題滿分7分)選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),P、Q分別為直線與x軸、y軸的交點,線段PQ的中點為M.
(Ⅰ)求直線的直角坐標(biāo)方程;
(Ⅱ)以坐標(biāo)原點O為極點,軸的正半軸為極軸建立極坐標(biāo)系,求點M的極坐標(biāo)和直線OM的極坐標(biāo)方程.
查看答案和解析>>
科目: 來源: 題型:
【題目】在△ABC中,角A,B,C的對邊分別為a,b,c.若sin(A﹣B)+sinC= sinA.
(1)求角B的值;
(2)若b=2,求a2+c2的最大值,并求取得最大值時角A,C的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】在直角坐標(biāo)系中,以原點為極點, 軸的正半軸為極軸建立極坐標(biāo)系,已知曲線: ,已知過點的直線的參數(shù)方程為(為參數(shù)),直線與曲線分別交于、兩點.
(1)寫出曲線和直線的直角坐標(biāo)方程.
(2)若, , 成等比數(shù)列,求的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】一個算法的程序框圖如圖所示,若該程序輸出的結(jié)果為10,則判斷框中應(yīng)填入的條件是( )
A.k≥﹣3
B.k≥﹣2
C.k<﹣3
D.k≤﹣3
查看答案和解析>>
科目: 來源: 題型:
【題目】甲、乙兩個班級共有105名學(xué)生,某次數(shù)學(xué)考試按照“大于等于85分為優(yōu)秀,85分以下為非優(yōu)秀”的原則統(tǒng)計成績后,得到如下列聯(lián)表。
優(yōu)秀 | 非優(yōu)秀 | 總計 | |
甲班 | 10 | ||
乙班 | 30 | ||
總計 | 105 |
已知從甲、乙兩個班級中隨機抽取1名學(xué)生,其成績?yōu)閮?yōu)秀的概率為.
(1)請完成上面的列聯(lián)表;
(2)能否有把握認(rèn)為成績與班級有關(guān)系?
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)f(x)=lg(ax-bx)(a>1>b>0).
(Ⅰ)求f(x)的定義域;
(Ⅱ)當(dāng)x∈(1,+∞)時,f(x)的值域為(0,+∞),且f(2)=lg2,求實數(shù)a、b的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】下列說法中正確的是( )
A. 時,函數(shù)是增函數(shù),因為,所以是增函數(shù),這種推理是合情合理.
B. 在平面中,對于三條不同的直線, , ,若, ,將此結(jié)論放在空間中也是如此,這種推理是演繹推理.
C. 命題: , 的否定是: , .
D. 若分類變量與的隨機變量的觀察值越小,則兩個分類變量有關(guān)系的把握性越小
查看答案和解析>>
科目: 來源: 題型:
【題目】定義在R上的奇函數(shù)f(x),當(dāng)x≥0時,f(x)=,則關(guān)于x的函數(shù)F(x)=f(x)-a(0<a<1,a為常數(shù))的所有零點之和為______.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)f(x)=2x-P2-x,則下列結(jié)論正確的是( 。
A. ,為奇函數(shù)且為R上的減函數(shù)
B. ,為偶函數(shù)且為R上的減函數(shù)
C. ,為奇函數(shù)且為R上的增函數(shù)
D. ,為偶函數(shù)且為R上的增函數(shù)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com