相關習題
 0  259385  259393  259399  259403  259409  259411  259415  259421  259423  259429  259435  259439  259441  259445  259451  259453  259459  259463  259465  259469  259471  259475  259477  259479  259480  259481  259483  259484  259485  259487  259489  259493  259495  259499  259501  259505  259511  259513  259519  259523  259525  259529  259535  259541  259543  259549  259553  259555  259561  259565  259571  259579  266669 

科目: 來源: 題型:

【題目】如圖,在正三棱柱ABC-A1B1C1,底面△ABC的邊長AB=1,側棱長為,P是A1B1的中點,E、F、G分別是AC,BC,PC的中點.

(1)求FG與BB1所成角的大小;

(2)求證:平面EFG∥平面ABB1A1

查看答案和解析>>

科目: 來源: 題型:

【題目】設f(x)、g(x)、h(x)是定義域為R的三個函數,對于命題:①f(x)+g(x)、f(x)+h(x)、g(x)+h(x)均為增函數,則f(x)、g(x)、h(x)中至少有一個增函數;②若f(x)+g(x)、f(x)+h(x)、g(x)+h(x)均是以T為周期的函數,則f(x)、g(x)、h(x)均是以T為周期的函數,下列判斷正確的是( 。
A.①和②均為真命題
B.①和②均為假命題
C.①為真命題,②為假命題
D.①為假命題,②為真命題

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數f(x)=x2+2ax+3a+2.

(1)若函數f(x)的值域為[0,+∞),求a的值;

(2)若函數f(x)的函數值均為非負實數,求g(a)=2-a|a+3|的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】下列說法中,正確的是______(填上所有符合條件的序號)

①y=e-x在R上為增函數

②任取x>0,均有3x>2x

③函數y=f(x)的圖象與直線x=a可能有兩個交點

④y=2|x|的最小值為1;

⑤與y=3x的圖象關于直線y=x對稱的函數為y=log3x.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數

(1)判斷fx)的奇偶性,說明理由;

(2)當x>0時,判斷fx)的單調性并加以證明;

(3)若f(2t)-mft)>0對于t∈(0,+∞)恒成立,求m的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】平面直角坐標系xOy中,橢圓C: =1(a>b>0)的離心率是 ,拋物線E:x2=2y的焦點F是C的一個頂點.
(1)求橢圓C的方程;
(2)設P是E上的動點,且位于第一象限,E在點P處的切線l與C交與不同的兩點A,B,線段AB的中點為D,直線OD與過P且垂直于x軸的直線交于點M.
①求證:點M在定直線上;
②直線l與y軸交于點G,記△PFG的面積為S1 , △PDM的面積為S2 , 求 的最大值及取得最大值時點P的坐標.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知f(x)=a(x﹣lnx)+ ,a∈R.
(1)討論f(x)的單調性;
(2)當a=1時,證明f(x)>f′(x)+ 對于任意的x∈[1,2]成立.

查看答案和解析>>

科目: 來源: 題型:

【題目】據某氣象中心觀察和預測:發(fā)生于M地的沙塵暴一直向正南方向移動,其移動速度v(km/h)與時間t(h)的函數圖象如圖所示.過線段OC上一點T(t,0)作橫軸的垂線l,梯形OABC在直線l左側部分的面積即時間t(h)內沙塵暴所經過的路程s(km)

(1)t4時,求s的值;

(2)st變化的規(guī)律用數學關系式表示出來;

(3)N城位于M地正南方向,且距M650 km,試判斷這場沙塵暴是否會侵襲到N城,如果會,在沙塵暴發(fā)生后多長時間它將侵襲到N城?如果不會,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數fx)=

(1)若f(2)=a,求a的值;

(2)當a=2時,若對任意互不相等的實數x1,x2∈(mm+4),都有>0成立,求實數m的取值范圍;

(3)判斷函數gx)=fx)-x-2aa<0)在R上的零點的個數,并說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】甲、乙兩人組成“星隊”參加猜成語活動,每輪活動由甲、乙各猜一個成語,在一輪活動中,如果兩人都猜對,則“星隊”得3分;如果只有一個人猜對,則“星隊”得1分;如果兩人都沒猜對,則“星隊”得0分.已知甲每輪猜對的概率是 ,乙每輪猜對的概率是 ;每輪活動中甲、乙猜對與否互不影響.各輪結果亦互不影響.假設“星隊”參加兩輪活動,求:
(1)“星隊”至少猜對3個成語的概率;
(2)“星隊”兩輪得分之和為X的分布列和數學期望EX.

查看答案和解析>>

同步練習冊答案