【題目】如圖,在正三棱柱ABC-A1B1C1,底面△ABC的邊長AB=1,側(cè)棱長為,P是A1B1的中點(diǎn),E、F、G分別是AC,BC,PC的中點(diǎn).
(1)求FG與BB1所成角的大;
(2)求證:平面EFG∥平面ABB1A1.
【答案】(1)30°; (2)見解析.
【解析】
(1)連接,可得,則與所成角即為與所成角.然后求解三角形得答案;
(2)由(1)可得,直線平面,再證明,由面面平行的判定可得平面平面.
(1)解:連接PB,
∵G,F(xiàn)分別是PC,BC的中點(diǎn),∴GF∥BP,
∴PB與BB1所成角即為FG與BB1所成角.
在Rt△PB1B中,由,
可得,
∴FG與BB1所成角的大小為30°;
(2)證明:由(1)可得,直線FG∥平面ABB1A1,
∵E是AC的中點(diǎn),∴EF∥AB,
∵AB平面ABB1A1,EF平面ABB1A1,
∴EF∥平面ABB1A1,
∵EF與FG相交,EF平面EFG,GF平面EFG,
∴平面EFG∥平面ABB1A1.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了了解某市開展群眾體育活動的情況,擬采用分層抽樣的方法從A、B、C三個(gè)區(qū)抽取5個(gè)工廠進(jìn)行調(diào)查.已知這三個(gè)區(qū)分別有9,18,18個(gè)工廠.
(1)求從A、B、C三個(gè)區(qū)中分別抽取的工廠的個(gè)數(shù);
(2)若從抽得的5個(gè)工廠中隨機(jī)地抽取2個(gè)進(jìn)行調(diào)查結(jié)果的比較,計(jì)算這2個(gè)工廠中至少有一個(gè)來自C區(qū)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在R上的函數(shù)f(x)=ax2+x.
(Ⅰ)當(dāng)a>0時(shí),求證:對任意的x1,x2∈R都有[f(x1)+f(x2)]成立;
(Ⅱ)當(dāng)x∈[0,2]時(shí),|f(x)|≤1恒成立,求實(shí)數(shù)a的取值范圍;
(Ⅲ)若a=,點(diǎn)p(m,n2)(m∈Z,n∈Z)是函數(shù)y=f(x)圖象上的點(diǎn),求m,n.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓M的方程為x 2+(y-2)2=1,直線l的方程為x-2y=0,點(diǎn)P在直線l上,過P點(diǎn)作圓M的切線PA,PB,切點(diǎn)為A,B.
(1)若∠APB=60°,試求點(diǎn)P的坐標(biāo);
(2)若P點(diǎn)的坐標(biāo)為(2,1),過P作直線與圓M交于C,D兩點(diǎn),當(dāng)時(shí),求直線CD的方程;
(3)求證:經(jīng)過A,P,M三點(diǎn)的圓必過定點(diǎn),并求出所有定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系xOy中,橢圓C: =1(a>b>0)的離心率是 ,拋物線E:x2=2y的焦點(diǎn)F是C的一個(gè)頂點(diǎn).
(1)求橢圓C的方程;
(2)設(shè)P是E上的動點(diǎn),且位于第一象限,E在點(diǎn)P處的切線l與C交與不同的兩點(diǎn)A,B,線段AB的中點(diǎn)為D,直線OD與過P且垂直于x軸的直線交于點(diǎn)M.
①求證:點(diǎn)M在定直線上;
②直線l與y軸交于點(diǎn)G,記△PFG的面積為S1 , △PDM的面積為S2 , 求 的最大值及取得最大值時(shí)點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是圓柱OO′的軸截面,點(diǎn)P在圓柱OO′的底面圓周上,圓柱OO′的底面圓的半徑OA=1,側(cè)面積為2π,∠AOP=60°.
(1)求證:PB⊥平面APD;
(2)是否存在點(diǎn)G在PD上,使得AG⊥BD;并說明理由.
(3)求三棱錐D-AGB的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將邊長為1的正方形AA1O1O(及其內(nèi)部)繞OO1旋轉(zhuǎn)一周形成圓柱,如圖,AC長為 π,A1B1長為 ,其中B1與C在平面AA1O1O的同側(cè).
(1)求三棱錐C﹣O1A1B1的體積;
(2)求異面直線B1C與AA1所成的角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ex-x2+2ax.
(1)若a=1,求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)若f(x)在R上單調(diào)遞增,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知.
(1)設(shè), ,若函數(shù)存在零點(diǎn),求的取值范圍;
(2)若是偶函數(shù),設(shè),若函數(shù)與的圖象只有一個(gè)公共點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com