相關(guān)習題
 0  259735  259743  259749  259753  259759  259761  259765  259771  259773  259779  259785  259789  259791  259795  259801  259803  259809  259813  259815  259819  259821  259825  259827  259829  259830  259831  259833  259834  259835  259837  259839  259843  259845  259849  259851  259855  259861  259863  259869  259873  259875  259879  259885  259891  259893  259899  259903  259905  259911  259915  259921  259929  266669 

科目: 來源: 題型:

【題目】某校200名學生的數(shù)學期中考試成績頻率分布直方圖如圖所示,其中成績分組區(qū)間是,,,,.

1)求圖中的值;

2)根據(jù)頻率分布直方圖,估計這200名學生的平均分;

3)若這200名學生的數(shù)學成績中,某些分數(shù)段的人數(shù)與英語成績相應(yīng)分數(shù)段的人數(shù)之比如下表所示,求英語成績在的人數(shù).

分數(shù)段

1:2

2:1

6:5

1:2

1:1

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)

()時,求函數(shù)的單調(diào)區(qū)間;

()時,對任意恒在函數(shù)上方,若,的最大值

查看答案和解析>>

科目: 來源: 題型:

【題目】在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c.已知b=acosC+3bsin(B+C).
(1)若 ,求角A;
(2)在(1)的條件下,若△ABC的面積為 ,求a的值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)

(1)若,求函數(shù)的零點;

(2)若恒成立,求的取值范圍;

(3)設(shè)函數(shù),解不等式.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)f(x)=|x﹣2|﹣|x+1|.
(1)解不等式f(x)>1.
(2)當x>0時,函數(shù)g(x)= (a>0)的最小值總大于函數(shù)f(x),試求實數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】20160413山東濟南非法經(jīng)營疫苗系列案件披露后,引發(fā)社會高度關(guān)注,引起公眾、受種者和兒童家長對涉案疫苗安全性和有效性的擔憂。為采取后續(xù)處置措施提供依據(jù),保障受種者的健康,盡快恢復公眾接種疫苗的信心,科學嚴謹?shù)胤治錾姘敢呙缃臃N給受種者帶來的安全性風險和是否有效,對某疫苗預防疾病的效果,進行動物實驗,得到下面表格中的統(tǒng)計數(shù)據(jù):現(xiàn)從所有試驗動物中任取一只,取到注射疫苗動物的概率為

未發(fā)病

發(fā)病

合計

未注射疫苗

注射疫苗

合計

(1)求列聯(lián)表中的數(shù)據(jù)的值;

(2)繪制發(fā)病率的條形統(tǒng)計圖,并判斷疫苗是否有效?

(3)能夠有多大把握認為疫苗有效?

附:

查看答案和解析>>

科目: 來源: 題型:

【題目】已知極坐標系的極點與直角坐標系的原點重合,極軸與x軸的非負半軸重合,若曲線C1的方程為ρsin(θ+ )+2 =0,曲線C2的參數(shù)方程為 (θ為參數(shù)).
(1)將C1的方程化為直角坐標方程;
(2)若點Q為C2上的動點,P為C1上的動點,求|PQ|的最小值.

查看答案和解析>>

科目: 來源: 題型:

【題目】設(shè)函數(shù),其中向量

1)求函數(shù)的最小正周期與單調(diào)遞減區(qū)間;

2)在中,、分別是角、的對邊,已知,的面積為,求外接圓半徑

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在四棱錐中,底面為直角梯形, , , 垂直于底面 , , 分別為 的中點.

(Ⅰ)求證: ;

(Ⅱ)求四棱錐的體積和截面的面積.

查看答案和解析>>

科目: 來源: 題型:

【題目】某家具廠有方木料90,五合板600,準備加工成書桌和書櫥出售.已知生產(chǎn)第張書桌需要方木料O.l,五合板2,生產(chǎn)每個書櫥而要方木料0.2,五合板1,出售一張方桌可獲利潤80元,出售一個書櫥可獲利潤120元.

(1)如果只安排生產(chǎn)書桌,可獲利潤多少?

(2)怎樣安排生產(chǎn)可使所得利潤最大?

查看答案和解析>>

同步練習冊答案