科目: 來源: 題型:
【題目】已知f(x)的定義域是(0,+∞),f'(x)為f(x)的導(dǎo)函數(shù),且滿足f(x)<f'(x),則不等式 f(2)的解集是( )
A.(﹣∞,2)∪(1,+∞)
B.(﹣2,1)
C.(﹣∞,﹣1)∪(2,+∞)
D.(﹣1,2)
查看答案和解析>>
科目: 來源: 題型:
【題目】設(shè)f(x)是定義在R上的偶函數(shù),對任意的x∈R,都有f(x+4)=f(x),且當(dāng)x∈[﹣2,0]時, ,若在區(qū)間(﹣2,6]內(nèi)關(guān)于x的方程f(x)﹣loga(x+2)=0(0<a<1)恰有三個不同的實數(shù)根,則a的取值范圍是( )
A.
B.
C.
D.
查看答案和解析>>
科目: 來源: 題型:
【題目】為了得到 函數(shù)的圖象,只需把y=3sinx上所有的點(diǎn)( )
A.先把橫坐標(biāo)縮短到原來的 倍,然后向左平移 個單位
B.先把橫坐標(biāo)縮短到原來的2倍,然后向左平移 個單位
C.先把橫坐標(biāo)縮短到原來的2倍,然后向左右移 個單位
D.先把橫坐標(biāo)縮短到原來的 倍,然后向右平移 個單位
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)f(x)=kx,
(1)求函數(shù) 的單調(diào)遞增區(qū)間;
(2)若不等式f(x)≥g(x)在區(qū)間(0,+∞)上恒成立,求k的取值范圍;
(3)求證: .
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)f(x)=x﹣alnx(a∈R)
(1)當(dāng)a=2時,求曲線y=f(x)在點(diǎn)A(1,f(1))處的切線方程;
(2)求函數(shù)f(x)的極值.
查看答案和解析>>
科目: 來源: 題型:
【題目】在淘寶網(wǎng)上,某店鋪專賣孝感某種特產(chǎn).由以往的經(jīng)驗表明,不考慮其他因素,該特產(chǎn)每日的銷售量y(單位:千克)與銷售價格x(單位:元/千克,1<x≤5)滿足:當(dāng)1<x≤3時,y=a(x﹣3)2+ ,(a,b為常數(shù));當(dāng)3<x≤5時,y=﹣70x+490.已知當(dāng)銷售價格為2元/千克時,每日可售出該特產(chǎn)600千克;當(dāng)銷售價格為3元/千克時,每日可售出150千克.
(1)求a,b的值,并確定y關(guān)于x的函數(shù)解析式;
(2)若該特產(chǎn)的銷售成本為1元/千克,試確定銷售價格x的值,使店鋪每日銷售該特產(chǎn)所獲利潤f(x)最大(x精確到0.1元/千克).
查看答案和解析>>
科目: 來源: 題型:
【題目】在△ABC中,a,b,c分別為內(nèi)角A,B,C的對邊,面積S= abcosC
(1)求角C的大小;
(2)設(shè)函數(shù)f(x)= sin cos +cos2 ,求f(B)的最大值,及取得最大值時角B的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】對于函數(shù)f(x)= ,有下列5個結(jié)論:
①任取x1 , x2∈[0,+∞),都有|f(x1)﹣f(x2)|≤2;
②函數(shù)y=f(x)在區(qū)間[4,5]上單調(diào)遞增;
③f(x)=2kf(x+2k)(k∈N+),對一切x∈[0,+∞)恒成立;
④函數(shù)y=f(x)﹣ln(x﹣1)有3個零點(diǎn);
⑤若關(guān)于x的方程f(x)=m(m<0)有且只有兩個不同實根x1 , x2 , 則x1+x2=3.
則其中所有正確結(jié)論的序號是 . (請寫出全部正確結(jié)論的序號)
查看答案和解析>>
科目: 來源: 題型:
【題目】設(shè)函數(shù)f(x)在R上可導(dǎo),其導(dǎo)函數(shù)為f′(x),且函數(shù)y=(1﹣x)f′(x)的圖象如圖所示,則下列結(jié)論中一定成立的是( )
A.函數(shù)f(x)有極大值f(2)和極小值f(1)
B.函數(shù)f(x)有極大值f(﹣2)和極小值f(1)
C.函數(shù)f(x)有極大值f(2)和極小值f(﹣2)
D.函數(shù)f(x)有極大值f(﹣2)和極小值f(2)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com