相關(guān)習(xí)題
 0  260749  260757  260763  260767  260773  260775  260779  260785  260787  260793  260799  260803  260805  260809  260815  260817  260823  260827  260829  260833  260835  260839  260841  260843  260844  260845  260847  260848  260849  260851  260853  260857  260859  260863  260865  260869  260875  260877  260883  260887  260889  260893  260899  260905  260907  260913  260917  260919  260925  260929  260935  260943  266669 

科目: 來源: 題型:

【題目】已知橢圓C:x2+4y2=4.
(1)求橢圓C的離心率;
(2)橢圓C的長軸的兩個端點分別為A,B,點P在直線x=1上運動,直線PA,PB分別與橢圓C相交于M,N兩個不同的點,求證:直線MN與x軸的交點為定點.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)f(x)=x﹣1+aex
(1)若曲線y=f(x)在點(1,f(1))處的切線平行于x軸,求a的值;
(2)求f(x)的極值;
(3)當(dāng)a=1時,曲線y=f(x)與直線y=kx﹣1沒有公共點,求k的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖1,在邊長為2的菱形ABCD中,∠BAD=60°,將△BCD沿對角線BD折起到△B'CD的位置,使平面BC'D⊥平面ABD,E是BD的中點,F(xiàn)A⊥平面ABD,且FA=2 ,如圖2.
(1)求證:FA∥平面BC'D;
(2)求平面ABD與平面FBC'所成角的余弦值;
(3)在線段AD上是否存在一點M,使得C'M⊥平面FBC?若存在,求 的值;若不存在,說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】某中學(xué)高一、高二年級各有8個班,學(xué)校調(diào)查了春學(xué)期各班的文學(xué)名著閱讀量(單位:本),并根據(jù)調(diào)查結(jié)果,得到如下所示的莖葉圖:
為鼓勵學(xué)生閱讀,在高一、高二兩個兩個年級中,學(xué)校將閱讀量高于本年級閱讀量平均數(shù)的班級命名為該年級的“書香班級”.
(1)當(dāng)a=4時,記高一年級“書香班級”數(shù)為m,高二年級的“書香班級”數(shù)為n,比較m,n的大小關(guān)系;
(2)在高一年級8個班級中,任意選取兩個,求這兩個班級均是“書香班級”的概率;
(3)若高二年級的“書香班級”數(shù)多于高一年級的“書香班級”數(shù),求a的值(只需寫出結(jié)論)

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)f(x)=sin(ωx﹣ )(ω>0)的圖象與x軸的相鄰兩個交點的距離為
(1)求w的值;
(2)設(shè)函數(shù)g(x)=f(x)+2cos2x﹣1,求g(x)在區(qū)間 上的最大值和最小值.

查看答案和解析>>

科目: 來源: 題型:

【題目】秦九韶是我國南宋時期的數(shù)學(xué)家,他在《數(shù)學(xué)九章》中提出的多項式的秦九韶算法,至今仍是比較先進的算法,如圖是事項該算法的程序框圖,執(zhí)行該程序框圖,若輸入n,x的值分別為4,2,則輸出v的值為(
A.5
B.12
C.25
D.50

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù) (a>0). (Ⅰ)當(dāng)a=1時,求曲線y=f(x)在點(1,f(1))處的切線方程;
(Ⅱ)若 恒成立,求a的取值范圍;
(Ⅲ)證明:總存在x0 , 使得當(dāng)x∈(x0 , +∞),恒有f(x)<1.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知橢圓C: ,點P(4,0),過右焦點F作與y軸不垂直的直線l交橢圓C于A,B兩點. (Ⅰ)求橢圓C的離心率;
(Ⅱ)求證:以坐標(biāo)原點O為圓心與PA相切的圓,必與直線PB相切.

查看答案和解析>>

科目: 來源: 題型:

【題目】某校為研究學(xué)生語言學(xué)科的學(xué)習(xí)情況,現(xiàn)對高二200名學(xué)生英語和語文某次考試成績進行抽樣分析.將200名學(xué)生編號為001,002,…,200,采用系統(tǒng)抽樣的方法等距抽取10名學(xué)生,將10名學(xué)生的兩科成績(單位:分)繪成折線圖如下:
(Ⅰ)若第一段抽取的學(xué)生編號是006,寫出第五段抽取的學(xué)生編號;
(Ⅱ)在這兩科成績差超過20分的學(xué)生中隨機抽取2人進行訪談,求2人成績均是語文成績高于英語成績的概率;
(Ⅲ)根據(jù)折線圖,比較該校高二年級學(xué)生的語文和英語兩科成績,寫出你的結(jié)論和理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,四棱錐P﹣ABCD中,PD⊥平面PAB,AD∥BC,BC=CD= AD,E,F(xiàn)分別為線段AD,PD的中點.
(Ⅰ)求證:CE∥平面PAB;
(Ⅱ)求證:PD⊥平面CEF;
(Ⅲ)寫出三棱錐D﹣CEF與三棱錐P﹣ABD的體積之比.(結(jié)論不要求證明)

查看答案和解析>>

同步練習(xí)冊答案