【題目】已知函數(shù)f(x)=x﹣1+aex .
(1)若曲線y=f(x)在點(diǎn)(1,f(1))處的切線平行于x軸,求a的值;
(2)求f(x)的極值;
(3)當(dāng)a=1時,曲線y=f(x)與直線y=kx﹣1沒有公共點(diǎn),求k的取值范圍.
【答案】
(1)解:f(x)=x﹣1+aex.求導(dǎo),f′(x)=1+aex.
由f′(1)=0,1+ae=0,解得:a=﹣ ,
∴a的值﹣
(2)解:當(dāng)a≥0,f′(x)>0恒成立,則f(x)在R上是增函數(shù),無極值;
當(dāng)a<0時,令f′(x)=0,則ex=﹣ ,x=ln(﹣ ),
x<ln(﹣ ),f′(x)>0;當(dāng)x>ln(﹣ ),f′(x)<0,
∴f(x)在(﹣∞,ln(﹣ ))上單調(diào)遞增,在(ln(﹣ ),+∞)單調(diào)遞減,
f(x)在x=ln(﹣ )處取極大值,且極大值f(ln(﹣ ))=﹣ln(﹣a)﹣2,無極小值
(3)解:當(dāng)a=1時,f(x)=x﹣1+ex.
令g(x)=f(x)﹣(kx﹣1)=(1﹣k)x+ex,
由題意可知:g(x)=0無實(shí)數(shù)解,
假設(shè)k<1,此時g(0)=1>0,g( )=﹣1+ <0,
由函數(shù)g(x)的圖象連續(xù)不斷,由函數(shù)零點(diǎn)存在定理g(x)=0在R上至少有一解,
與方程g(x)=0,在R上沒有實(shí)數(shù)解矛盾,故k≥1,
由k=1時,g(x)=ex,可知方程g(x)=0在R上沒有實(shí)數(shù)解,
∴k的取值范圍[1,+∞)
【解析】(1)求導(dǎo),由題意可知f′(1)=0,即可求得a的值;(2)由(1)可知:分類討論,根據(jù)導(dǎo)數(shù)與函數(shù)的單調(diào)性及極值的關(guān)系,即可求得f(x)的極值;(3)由題意可知g(x)=(1﹣k)x+ex=0無實(shí)數(shù)解,求導(dǎo),根據(jù)函數(shù)的單調(diào)性及函數(shù)零點(diǎn)的判斷,即可求得k的取值范圍.
【考點(diǎn)精析】利用函數(shù)的極值與導(dǎo)數(shù)對題目進(jìn)行判斷即可得到答案,需要熟知求函數(shù)的極值的方法是:(1)如果在附近的左側(cè),右側(cè),那么是極大值(2)如果在附近的左側(cè),右側(cè),那么是極小值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知{an}是各項(xiàng)為正數(shù)的等差數(shù)列,Sn為其前n項(xiàng)和,且4Sn=(an+1)2 . (Ⅰ)求a1 , a2的值及{an}的通項(xiàng)公式;
(Ⅱ)求數(shù)列 的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工藝品廠要設(shè)計(jì)一個如圖1所示的工藝品,現(xiàn)有某種型號的長方形材料如圖2所示,其周長為4m,這種材料沿其對角線折疊后就出現(xiàn)圖1的情況.如圖,ABCD(AB>AD)為長方形的材料,沿AC折疊后AB'交DC于點(diǎn)P,設(shè)△ADP的面積為S2 , 折疊后重合部分△ACP的面積為S1 .
(Ⅰ)設(shè)AB=xm,用x表示圖中DP的長度,并寫出x的取值范圍;
(Ⅱ)求面積S2最大時,應(yīng)怎樣設(shè)計(jì)材料的長和寬?
(Ⅲ)求面積(S1+2S2)最大時,應(yīng)怎樣設(shè)計(jì)材料的長和寬?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) 下列四個命題: ①f(f(1))>f(3);
②x0∈(1,+∞), ;
③f(x)的極大值點(diǎn)為x=1;
④x1 , x2∈(0,+∞),|f(x1)﹣f(x2)|≤1
其中正確的有 . (寫出所有正確命題的序號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) (a>0). (Ⅰ)當(dāng)a=1時,求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)若 恒成立,求a的取值范圍;
(Ⅲ)證明:總存在x0 , 使得當(dāng)x∈(x0 , +∞),恒有f(x)<1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將一張邊長為12cm的正方形紙片按如圖(1)所示陰影部分裁去四個全等的等腰三角形,將余下部分沿虛線折疊并拼成一個有底的正四棱錐模型,如圖(2)所示放置.如果正四棱錐的主視圖是等邊三角形,如圖(3)所示,則正四棱錐的體積是( )
A. cm3
B. cm3
C. cm3
D. cm3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在四棱錐P﹣ABCD中,底面ABCD是∠DAB=60°且邊長為a的菱形,側(cè)面PAD為正三角形,其所在平面垂直于底面ABCD,若G為AD邊的中點(diǎn),
(1)求證:BG⊥平面PAD;
(2)求證:AD⊥PB;
(3)若E為BC邊的中點(diǎn),能否在棱PC上找到一點(diǎn)F,使平面DEF⊥平面ABCD,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為2的正六邊形ABCDEF中,動圓Q的半徑為1,圓心在線段CD(含端點(diǎn))上運(yùn)動,P是圓Q上及內(nèi)部的動點(diǎn),設(shè)向量 (m,n為實(shí)數(shù)),則m+n的取值范圍是( )
A.(1,2]
B.[5,6]
C.[2,5]
D.[3,5]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=(log2x﹣2)(log4x﹣ )
(1)當(dāng)x∈[2,4]時.求該函數(shù)的值域;
(2)若f(x)≥mlog2x對于x∈[4,16]恒成立,求m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com