科目: 來源: 題型:
【題目】設(shè)函數(shù).
()若,求函數(shù)的單調(diào)區(qū)間.
()若函數(shù)在區(qū)間上是減函數(shù),求實(shí)數(shù)的取值范圍.
()過坐標(biāo)原點(diǎn)作曲線的切線,證明:切點(diǎn)的橫坐標(biāo)為.
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為,將曲線向左平移個(gè)單位長度得到曲線.
(1)求曲線的參數(shù)方程;
(2)已知為曲線上的動(dòng)點(diǎn), 兩點(diǎn)的極坐標(biāo)分別為,求的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在四棱錐中,底面為梯形,平面平面
為側(cè)棱的中點(diǎn),且.
(1)證明: 平面;
(2)若點(diǎn)到平面的距離為,且,求點(diǎn)到平面的距離.
查看答案和解析>>
科目: 來源: 題型:
【題目】【2018屆山西省太原十二中高三上學(xué)期1月月考】運(yùn)動(dòng)員甲在最近場比賽中所得分?jǐn)?shù)的莖葉圖如圖所示,由于疏忽,莖葉圖中的兩個(gè)數(shù)據(jù)上出行了污漬,導(dǎo)致這兩個(gè)數(shù)字無法辨認(rèn),但統(tǒng)計(jì)員記得除掉污漬處的數(shù)字不影響整體中位數(shù),且這六個(gè)數(shù)據(jù)的平均值為.
(1)求污漬處的數(shù)字;
(2)籃球運(yùn)動(dòng)員乙在最近場的比賽中所得分?jǐn)?shù)為.試分別以各自場比賽得分的平均數(shù)與方差來分析這兩名籃球運(yùn)動(dòng)員的發(fā)揮水平.
查看答案和解析>>
科目: 來源: 題型:
【題目】設(shè)S是實(shí)數(shù)集R的非空子集,若對(duì)任意x,y∈S,都有x+y,x-y,xy∈S,則稱S為封閉集.下列命題:①集合S={a+b|a,b為整數(shù)}為封閉集;②若S為封閉集,則一定有0∈S;③封閉集一定是無限集;④若S為封閉集,則滿足STR的任意集合T也是封閉集.其中真命題是________.(寫出所有真命題的序號(hào))
查看答案和解析>>
科目: 來源: 題型:
【題目】用C(A)表示非空集合A中的元素個(gè)數(shù),定義A*B=若A={1,2},B={x|(x2+ax)·(x2+ax+2)=0},且A*B=1,設(shè)實(shí)數(shù)a的所有可能取值組成的集合是S,則C(S)等于( )
A. 1 B. 3
C. 5 D. 7
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù), .
(Ⅰ)求曲線在點(diǎn)處的切線的斜率;
(Ⅱ)判斷方程(為的導(dǎo)數(shù))在區(qū)間內(nèi)的根的個(gè)數(shù),說明理由;
(Ⅲ)若函數(shù)在區(qū)間內(nèi)有且只有一個(gè)極值點(diǎn),求的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓的一個(gè)焦點(diǎn)坐標(biāo)為.
(Ⅰ)求橢圓的方程;
(Ⅱ)已知點(diǎn),過點(diǎn)的直線(與軸不重合)與橢圓交于兩點(diǎn),直線與直線相交于點(diǎn),試證明:直線與軸平行.
查看答案和解析>>
科目: 來源: 題型:
【題目】2017年,世界乒乓球錦標(biāo)賽在德國的杜賽爾多夫舉行.整個(gè)比賽精彩紛呈,參賽選手展現(xiàn)出很高的競技水平,為觀眾奉獻(xiàn)了多場精彩對(duì)決.圖1(扇形圖)和表1是其中一場關(guān)鍵比賽的部分?jǐn)?shù)據(jù)統(tǒng)計(jì).兩位選手在此次比賽中擊球所使用的各項(xiàng)技術(shù)的比例統(tǒng)計(jì)如圖1.在乒乓球比賽中,接發(fā)球技術(shù)是指回接對(duì)方發(fā)球時(shí)使用的各種方法.選手乙在比賽中的接發(fā)球技術(shù)統(tǒng)計(jì)如表1,其中的前4項(xiàng)技術(shù)統(tǒng)稱反手技術(shù),后3項(xiàng)技術(shù)統(tǒng)稱為正手技術(shù).
圖1
選手乙的接發(fā)球技術(shù)統(tǒng)計(jì)表
技術(shù) | 反手?jǐn)Q球 | 反手搓球 | 反手拉球 | 反手撥球 | 正手搓球 | 正手拉球 | 正手挑球 |
使用次數(shù) | 20 | 2 | 2 | 4 | 12 | 4 | 1 |
得分率 | 55% | 50% | 0% | 75% | 41.7% | 75% | 100% |
表1
(Ⅰ)觀察圖1,在兩位選手共同使用的8項(xiàng)技術(shù)中,差異最為顯著的是哪兩項(xiàng)技術(shù)?
(Ⅱ)乒乓球接發(fā)球技術(shù)中的拉球技術(shù)包括正手拉球和反手拉球.從表1統(tǒng)計(jì)的選手乙的所有拉球中任取兩次,至少抽出一次反手拉球的概率是多少?
(Ⅲ)如果僅從表1中選手乙接發(fā)球得分率的穩(wěn)定性來看(不考慮使用次數(shù)),你認(rèn)為選手乙的反手技術(shù)更穩(wěn)定還是正手技術(shù)更穩(wěn)定?(結(jié)論不要求證明)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com