相關(guān)習(xí)題
 0  261025  261033  261039  261043  261049  261051  261055  261061  261063  261069  261075  261079  261081  261085  261091  261093  261099  261103  261105  261109  261111  261115  261117  261119  261120  261121  261123  261124  261125  261127  261129  261133  261135  261139  261141  261145  261151  261153  261159  261163  261165  261169  261175  261181  261183  261189  261193  261195  261201  261205  261211  261219  266669 

科目: 來源: 題型:

【題目】已知函數(shù)

1)設(shè)

若函數(shù)處的切線過點(diǎn),求的值;

當(dāng)時(shí),若函數(shù)上沒有零點(diǎn),求的取值范圍.

2)設(shè)函數(shù),且,求證: 當(dāng)時(shí),

查看答案和解析>>

科目: 來源: 題型:

【題目】已知經(jīng)過兩點(diǎn)的圓半徑小于5,且在軸上截得的線段長為.

(1)求圓的方程;

(2)已知直線,若與圓交于兩點(diǎn),且以線段為直徑的圓經(jīng)過坐標(biāo)原點(diǎn),求直線的方程.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若恒成立,試確定實(shí)數(shù)的取值范圍;

(3)證明.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知等差數(shù)列滿足,數(shù)列的前項(xiàng)和為,且滿足.

(1)求數(shù)列的通項(xiàng)公式;

(2)數(shù)列滿足,求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù),

(1)當(dāng)時(shí),求函數(shù)的圖象在處的切線方程;

(2)若函數(shù)在定義域上為單調(diào)增函數(shù)

①求最大整數(shù)值

②證明:

查看答案和解析>>

科目: 來源: 題型:

【題目】已知橢圓的四個(gè)頂點(diǎn)組成的四邊形的面積為,且經(jīng)過點(diǎn)

1求橢圓的方程;

2若橢圓的下頂點(diǎn)為,如圖所示,點(diǎn)為直線上的一個(gè)動(dòng)點(diǎn),過橢圓的右焦點(diǎn)的直線垂直于,且與交于兩點(diǎn),與交于點(diǎn),四邊形的面積分別為的最大值

查看答案和解析>>

科目: 來源: 題型:

【題目】某市政府為了引導(dǎo)居民合理用水,決定全面實(shí)施階梯水價(jià),階梯水價(jià)原則上以住宅(一套住宅為一戶)的月用水量為基準(zhǔn)定價(jià):若用水量不超過12噸時(shí),按4元/噸計(jì)算水費(fèi);若用水量超過12噸且不超過14噸時(shí),超過12噸部分按6.60元/噸計(jì)算水費(fèi);若用水量超過14噸時(shí),超過14噸部分按7.8元/噸計(jì)算水費(fèi).為了了解全市居民月用水量的分布情況,通過抽樣,獲得了100戶居民的月用水量(單位:噸),將數(shù)據(jù)按照分成8組,制成了如圖1所示的頻率分布直方圖.

(Ⅰ)假設(shè)用抽到的100戶居民月用水量作為樣本估計(jì)全市的居民用水情況.

(。┈F(xiàn)從全市居民中依次隨機(jī)抽取5戶,求這5戶居民恰好3戶居民的月用水量都超過12噸的概率;

(ⅱ)試估計(jì)全市居民用水價(jià)格的期望(精確到0.01);

(Ⅱ)如圖2是該市居民李某2016年1~6月份的月用水費(fèi)(元)與月份的散點(diǎn)圖其擬合的線性回歸方程是.若李某201617月份水費(fèi)總支出為294.6元,試估計(jì)李某7月份的用水噸數(shù).

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖所示,該幾何體是由一個(gè)直三棱柱和一個(gè)正四棱錐組合而成, ,

(Ⅰ)證明:平面平面;

(Ⅱ)求正四棱錐的高,使得二面角的余弦值是

查看答案和解析>>

科目: 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,已知點(diǎn),以原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立坐標(biāo)系,曲線的極坐標(biāo)方程為,過點(diǎn)作極坐標(biāo)方程為的直線的平行線,分別交曲線兩點(diǎn).

1)寫出曲線和直線的直角坐標(biāo)方程;

(2)若成等比數(shù)列,求的值.

查看答案和解析>>

科目: 來源: 題型:

【題目】設(shè)函數(shù), .

1)當(dāng)時(shí),討論的單調(diào)性;

(2)當(dāng)時(shí), 恒成立,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案